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Abstract

Echocardiography plays a key role in assessing cardiac diseases, especially in evaluating
left ventricular (LV) function. It enables real-time, non-invasive, and relatively low cost
acquisition of cardiac images. Furthermore, it can be performed bedside using portable
equipment. The latest generation of echocardiography scanners allows the acquisition of
volumetric images of the heart in real time, which could further improve the accuracy of
functional analysis. However, accurate and automated analysis of 3D+T recordings is a
challenging task. This is due to echocardiography imaging artifacts (e.g. speckle noise, signal
dropouts), and the necessity of computationally efficient algorithms to exploit the real-time
nature of the modality.

A Kalman filter based tracking framework was previously proposed for automatic and
real-time analysis of LV structures in 3D echocardiography recordings. The approach was
validated for detection and tracking of the endo- and epicardial borders of the LV, and
noteworthy results were reported. The main goal of this thesis has been to extend the
existing framework with more advanced algorithms for improving endocardial border tracking
accuracy. In this work:

• Advanced edge detection methods including graph-cut based, maximum likelihood,
empirical Bayes, and generalized step criterion endocardial edge detectors have been
introduced. In addition, a polynomial regression based method has been proposed to
filter endocardial edge measurements.

• Biomechanically constrained tracking of multi-resolution Doo-Sabin surface models has
been investigated; an isoparametric finite element analysis (FEA) approach for Doo-
Sabin surface models, and modification of the tracking framework to use isoparametric
FEA have been introduced.

The proposed endocardial edge measurement and biomechanically constrained tracking
approaches were evaluated using manually segmented 3D echocardiography recordings
provided by medical experts. The comparative analyses showed that:

• The graph-cut based edge detector improves endocardial detection accuracy of the
tracking framework at end-diastole.

• The maximum likelihood and empirical Bayes edge detectors improve detection
accuracy for the whole cardiac cycle, while introducing additional computational
complexity.

• The generalized step criterion edge detectors enable real-time maximum likelihood
detectors.

• The polynomial regression based edge filtering provides an intuitive controller for the
tradeoff between edge detection bias and variance.

• Biomechanical constraints can significantly improve endocardium tracking accuracy of
subdivision surface models with high control node resolutions.
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Chapter 1

Introduction
Engin Dikici
Norwegian University of Science and Technology, Trondheim, Norway

1.1 Background and Motivation

Cardiovascular diseases (CVDs) are the major causes of death for both men and women
worldwide, with more than 17 million deaths from CVDs in 2008 [1]. It is estimated
that CVDs will remain the main cause of death and will lead to approximately 23
million deaths in 2030. Rapid and portable tools for analyzing cardiac function will
most likely be necessary for early detection and diagnosis of several types of CVDs.
These tools will also need to be affordable, as 80% of CVD deaths take place in low-
middle income countries with limited health care budgets [1].

Cardiac ultrasound, echocardiography, is an imaging modality that enables rapid,
non-invasive and relatively low cost evaluation of cardiac function. It can be used
bedside with portable equipment. Due to these advantages, echocardiography has
been the method of choice in most situations requiring cardiac function analysis [2].
The latest generation of echocardiography scanners allows for acquisition of volumetric
images of the heart in either real time or over a few heartbeats. Volumetric acquisition
allows medical experts to visualize moving cardiac structures from arbitrary planes in
real time. It can also improve the accuracy of functional analyses compared to the
more traditional motion mode (M-mode) and two dimensional (2D) echocardiography
[3–5].

Evaluation of left ventricular (LV) function is the most common reason for
conducting an echocardiography examination. This is due to the fact that the structure
and deformation pattern of the LV has a particular importance in the diagnosis of
CVDs [6]. Segmentation of the LV endocardial borders in echocardiography recordings
enables quantitative functional analysis of the heart by providing measurements
such as stroke volume (SV) and ejection fraction (EF). Applications requiring a
quantitative wall motion analysis, including the detection of myocardial ischemia
[7, 8] and assessment of LV dyssynchrony [9, 10], also benefit from endocardial surface
segmentation.

Manual segmentation of LV endocardial borders is a time-consuming process that
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1.1. Background and Motivation

is prone to poor reproducibility [11]. Availability of automated segmentation tools
enables more rapid functional analysis and lowers the amount of inter- and intra-
examiner variability during the analysis. However, automated segmentation of LV
endocardial borders in echocardiography recordings is a challenging task due to reasons
including (1) speckle noise, (2) shadowing that can result in missing boundaries, and
(3) the existence of intra-cavity structures such as chordae tendineae, papillary muscles
and valves [12] (see Figure 1.1). These challenges cause segmentation algorithms that
perform well for other modalities, like computed tomography and magnetic resonance,
to produce poor results for echocardiographic images. Real-time segmentation of the
endocardial borders might also be desirable for invasive procedures and intensive care
unit applications with monitoring requirements [13].

Automatic and semi-automatic segmentation algorithms for volumetric and time
dependent (3D+T) echocardiography recordings have received considerable attention
in recent years. Review articles from Noble & Boukerroui [14], and Leung & Bosch
[15] provide excellent overviews of the research efforts in the field. Yet, only a
few of the proposed algorithms can perform the segmentation in a rapid fashion,
where each frame is processed in means of milliseconds or seconds. In [16], a one-
step forward prediction approach using motion manifold learning was introduced for
tracking endocardial borders. The method produced less than 1.5mm mean surface
error, and segmented each 3D echocardiography frame in 1.5s (using an undefined
system configuration). Yet, it relied on a comprehensive training dataset to capture the
endocardial motion patterns of the novel cases. Rajchl et al. treated 3D endocardium
segmentation as a binary graph partitioning problem [17]. To formulate an energy
function, they used (1) two cost terms based on maximum log-likelihood of two
Fisher-Tippett distributions, representing the inside and outside of the LV cavity
classes, and (2) an additional cost term to constraint the model geometry. The
energy function was minimized using a flow-maximization algorithm described in [18]
that can be computed on a parallel computation platform. The approach produced
3.54mm mean endocardial surface error, and processed each frame in 100ms (using an
undefined system configuration). In [19], an Active Geometric Functions (AGF) based

Figure 1.1: Echocardiography imaging challenges. (A) Strong speckle pattern and
low contrast, (B) dropout of the anterior wall due to a long shadow, and (C) similar
intensity myocardial wall and trabeculations (the ground-truth endocardial border is
shown in yellow) cases are represented for three sample images.
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Chapter 1. Introduction

framework was proposed for real-time segmentation of the endocardium in 3D+T
echocardiography. In their study, a specific instance of AGF based on finite element
modeling and Hermite endocardial surface descriptors was implemented and evaluated.
The mean distance of AGF segmentation to manual tracings was reported as 4.00mm,
and the processing time per frame was 32.9ms (using a 2.0GHz Intel 32-bit CPU).
Duan et al. introduced a semi-automated region-based endocardium tracking approach
[20], where the endocardial borders at end-diastole (ED) and end-systole (ES) frames
were manually delineated. Their algorithm propagated the segmentation results
throughout the cardiac cycle using the estimated myocardial surface displacement
fields computed between consecutive frames. The root mean square error for the
tracked surfaces was 0.06, and the computation time for tracking a frame was 9s
(using a 2.4GHz AMD CPU). In a recent study, Barbosa et al. proposed a pipeline to
track endocardial borders in 3D+T echocardiography recordings [21] using B-spline
Explicit Active Surfaces [22]. It required six clicks per 3D volume to initialize an
ellipsoid-shaped endocardial mesh for the first frame. The pipeline was evaluated for
its volumetric measurement accuracy, and the Pearson product-moment correlation
coefficients between the extracted and reference LV cavity volumes were reported as
0.963 and 0.947 for the ED and ES frames respectively. The total processing time,
including manual initialization and automated tracking, for a 3D+T recording was
30s (using a 2.8 GHz Intel Core i7 CPU).

State-space analysis using Kalman filtering has also been employed for detection
and tracking of LV structures in time-dependent recordings. The approach uses a
sequential prediction and update strategy, where shape deformations are first predicted
by a kinematic model, followed by an update step based on information provided by
image measurements. A Kalman filtering framework for tracking B-spline models was
first introduced by Blake et al. [23–25]. This framework was adapted for LV tracking in
long-axis 2D+T echocardiography in [26–28]. Orderud et al. extended the approach
for real-time segmentation in 3D+T echocardiography recordings by tracking rigid
ellipsoid [29], flexible spline-based [30] and Doo-Sabin subdivision LV models [31]. The
Doo-Sabin subdivision surface tracking framework produced approximately 2.5mm
mean surface error for the tracking of endocardial borders in 3D echocardiography
recordings, and processed each frame in only 7.5ms (using a 2.80 GHz Intel Core
2 CPU). The approach was later utilized for a variety of tasks including coupled
segmentation of endo- and epicardial borders [32], automated alignment of standard
views [33], and cardiac strain assessment in 3D echocardiography [34].

The tracking framework proposed in [31] has several advantages: The method (1)
provides a true real-time detection and tracking solution, which allows the monitoring
of LV function in real time, (2) leads to comparable or better endocardial border
tracking accuracy than other state-of-the-art approaches, and (3) does not require
manual initialization; the tracked anatomical structure’s borders are automatically
located at run-time. However, the tracking framework could be further extended with
more advanced algorithms to improve the accuracy of 3D+T echocardiography image
analysis.

3



1.2. Aims of Study

1.2 Aims of Study

The main goal of this thesis has been to improve the existing Kalman tracking
framework [31] to enhance the accuracy of 3D+T echocardiography image analysis.
The framework could benefit from improvements in both the edge detection and state
prediction stages.

The tracking framework guides a predicted surface model toward a target object
with the assistance of edge detection. A set of simple edge detectors had previously
been applied in the framework to detect LV endocardial borders. These approaches
were computationally efficient, yet they oversimplified the endocardial edge detection
task. Therefore, one of the goals of this study has been to develop advanced
endocardial edge detectors that can produce more accurate results while still allowing
real-time or nearly real-time tracking.

The state prediction stage of the framework uses a motion model to predict the
tracked surface’s shape and position in a following frame. The tracking framework
had employed an intuitive motion model performing a regularization toward an initial
state. The work presented in this thesis has aimed to introduce a more realistic
motion model that can factor in some of the biomechanical properties of the LV
myocardium. A biomechanically constrained motion model can provide a more
advanced regularization; hence, it can enable tracking that scales gracefully with higher
resolution subdivision surface models to improve model fitting accuracy.

To summarize, this thesis aims to:

• Introduce edge detection methods that can perform more accurate endocardial
edge measurements in either real time or near real time.

• Extend the framework with biomechanically constrained tracking that allows the
usage of higher resolution subdivision surface models.

1.3 Summary of Presented Work

1.3.1 Contribution 1 - Graph Cuts Based Edge Measurements
(Chapter 3)

Consistent endocardial border segmentation in 3D echocardiography is a challenging
task. One of the major difficulties rises due to the fact that the trabeculated
structure of the LV causes endocardial intensity profile characteristics to change over
the cardiac cycle. Previously proposed edge measurement methods for the tracking
framework process each surface position independently, without considering the other
edge measurements performed around a surface model.

We treat endocardial edge detection as a binary graph partitioning task with the
inside and outside of the LV cavity classes. The method first generates a graph using
all intensity profiles collected around a surface model, then partitions the graph using
a max flow/min cut algorithm (MFMC). We observed that for ES, the step criterion
edge detector (STEP) [35] produces more accurate segmentation results than MFMC.
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Chapter 1. Introduction

Therefore, we introduced a weighted combination of MFMC and STEP methods called
a hybrid edge detector (Hybrid). Hybrid combines the responses of MFMC and STEP
using weights determined by the size of the tracked endocardial mesh.

A set of 10 apical 3D echocardiography recordings was used to evaluate the
proposed approaches. The set included 3 normal cases and 7 cases from patients
with heart diseases. The STEP, MFMC and Hybrid edge detectors were each used in
connection to the Kalman tracking framework described in [31]. The accuracies of the
edge detectors were evaluated by comparing the extracted meshes against reference
meshes segmented by a medical expert. The average unsigned distance between the
tracked surface points and their estimated correct positions was computed for each
method: STEP, MFMC and Hybrid produced 3.06mm, 2.62mm and 2.50mm point-
to-point errors at ED, and 3.10mm, 3.70mm and 3.02mm point-to-point errors at
ES respectively. The average signed ejection fraction errors were reported as −6.2%,
−8.3% and −3.8% for the STEP, MFMC and Hybrid methods respectively. The
tracking framework processed each frame in 7.5ms with STEP, 78ms with MFMC,
and 80ms with Hybrid when executed on a 2.80 GHz Intel Core 2 Duo CPU. The
results suggest that (1) the MFMC method segments the endocardial borders with
higher accuracy at ED, while performing poorly at ES, and (2) combining multiple
edge detectors could improve edge detection accuracy for all cardiac cycle.

This topic is described in the paper “Graph-Cut Based Edge Detection for Kalman
Filter Based Left Ventricle Tracking in 3D+T Echocardiography”, accepted by IEEE
Computing in Cardiology 2010.

1.3.2 Contribution 2 - Edge Measurement Filtering (Chapter
4)

Edge detection results produced by a rapid but relatively low accuracy edge detector
can be filtered to generate more accurate results. In this study, a local polynomial
regression based method (LPR) was introduced for filtering the step criterion
endocardial edge measurements. The method first computes the STEP edges at evenly
distributed positions around an endocardial surface model. Then, the detected STEP
edges are filtered by an arbitrary order LPR with an Epanechnikov weighting kernel.

A set of 17 apical 3D echocardiography recordings, which included 10 normal cases
and 7 cases from patients with heart diseases, was used for the evaluation. Local
polynomial regression based edge filtering method was implemented for the first (LPR-
1) and second order (LPR-2) polynomials. STEP, MFMC, LPR-1 and LPR-2 methods
were each used in connection to the existing Kalman tracking framework. The outlier
edge elimination feature of the tracker was turned off to fully observe the effects
of filtering. The accuracies of the edge detectors were evaluated by comparing the
extracted surfaces against the verified reference surfaces drawn by a medical expert.
The average unsigned distance between the tracked surface points and the reference
surfaces was computed for each method: STEP, MFMC, LPR-1 and LPR-2 produced
2.94mm, 2.38mm, 2.61mm and 2.57mm point-to-surface errors at ED, and 2.20mm,
2.46mm, 2.16mm and 2.07mm point-to-surface errors at ES respectively. The tracking
framework processed each frame in 23.7ms with LPR-1 and 40.8ms with LPR-2 when
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executed on a 2.80 GHz Intel Core 2 Duo CPU. The results suggest that the LPR
method can improve overall edge detection accuracy.

This project is described in the paper ”Polynomial Regression Based Edge Filtering
for Left Ventricle Tracking in 3D Echocardiography”, accepted by Statistical Atlases
and Computational Models of the Heart 2011.

1.3.3 Contribution 3 - Maximum Likelihood Edge Measure-
ments (Chapters 5, 6 and 7)

Estimation accuracies of edge detection algorithms vary depending on both endocardial
surface and cardiac cycle positions. The responses of multiple edge detectors
can therefore be combined using a statistical learning approach to generate better
endocardial edge estimates [36]. Thus, we proposed three maximum likelihood based
approaches that utilize multiple simpler edge detectors.

First, we developed the best linear unbiased estimator (BLUE) that combines
the responses of the maximum gradient (MG) [25], STEP and MFMC, which are
referred to as the base detectors. The system (1) learns the statistical properties
of the base estimators for each endocardial surface point at each cardiac cycle
position, and (2) combines the base estimator responses linearly via weights inferred
from the statistical properties. It was also shown that BLUE and the maximum
likelihood (ML) estimator lead to identical solutions for the investigated edge detection
problem if the base estimator error distributions are assumed to be Gaussian. A
set of 18 apical 3D echocardiography recordings, including 10 normal cases and
8 cases from patients with heart diseases, was used during the evaluation. As
BLUE requires a training process, it was validated using a 3-fold cross validation
(CV). The average squared distance between the tracked surface points and the
reference surfaces was computed for each method: MG, STEP, MFMC and BLUE
produced 15.5mm2, 11.1mm2, 8.9mm2and 7mm2 squared point-to-surface errors at
ED, 17.2mm2, 7.3mm2, 10.3mm2 and 8.2mm2 squared point-to-surface errors at ES
respectively. The tracking framework processed each frame in 81ms with BLUE when
executed on a 2.80 GHz Intel Core 2 Duo CPU. The algorithm is presented in the paper
“Best Linear Unbiased Estimator for Kalman Filter Based Left Ventricle Tracking in
3D+T Echocardiography”, published in the Proceedings of the IEEE Workshop on
Mathematical Methods in Biomedical Image Analysis 2012.

Next, we extended the ML (or BLUE) edge detector by incorporating contextual
priors giving the probabilistic distribution of endocardial edges around a surface model.
The method first employs a training stage to produce an ML model, giving the optimal
base detector weights for each cardiac cycle and endocardial surface position. For a
given novel case, the method (1) estimates ML edges using the learned ML model, (2)
generates a contextual prior utilizing the estimated ML edges in an empirical fashion,
and (3) fuses ML estimates with the contextual prior to find empirical Bayes (EB)
endocardial edge estimates. The testing setup from the previously conducted ML
study was used to evaluate the EB method (with similar recordings and CV folds).
The average squared distance between the tracked surface points and the reference
surfaces was computed: EB produced 6.11mm2 and 7.44mm2 squared point-to-surface
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errors at ED and ES frames respectively. The tracking framework processed each
frame in 83ms with the EB method. The approach improved the tracking accuracy
of the ML by taking advantage of the Stein effect. The Stein effect briefly asserts
that the estimation accuracy can be improved using the information coming from the
full model, which is the contextual prior in our study [37]. This project is described
in the paper “Empirical Bayes Estimators for Endocardial Edge Detection in 3D+T
Echocardiography”, published in the Proceedings of the International Symposium on
Biomedical Imaging 2012.

Both ML and EB improve the endocardial edge detection accuracy compared to sole
applications of MG, STEP and MFMC. However, they are computationally expensive
solutions processing each frame over 80ms. Therefore, we developed another ML based
approach with a new set of more efficient base detectors; the generalized step detectors.
A generalized kth order STEP detector (1) fits multiple piecewise kth order polynomial
functions to a given intensity profile, which is extracted on a tracked surface’s normal
direction, then (2) selects the optimal piecewise function in the least-squares (LS) sense
to locate the endocardial edge position. The responses of multiple generalized detectors
were combined using a similar approach as the previously developed ML method. The
approach was validated using a set of 29 recordings including 10 normal cases and 19
cases from patients with heart diseases. An N-fold CV was applied for the evaluation of
the ML method (STEP-ML) using 0th, 1st and 2nd order STEP as the base detectors.
The average squared distance between the tracked surface points and the reference
surfaces was computed for the STEP-ML and classic ML (ML) methods (ML uses
MG, STEP and MFMC). STEP-ML and ML produced 8.1mm2 and 7.5mm2 squared
point-to-surface errors at ED, 8.1mm2 and 7.5mm2squared point-to-surface errors at
ES respectively. The tracking framework processed each frame in 46.6ms with the
STEP-ML edge detector. STEP-ML produced comparable results with the previously
defined ML approach while reducing the processing time for each frame over 42%.
This topic is described in the paper “Generalized Step Criterion Edge Detectors for
Kalman Filter Based Left Ventricle Tracking in 3D+T Echocardiography”, accepted
by Statistical Atlases and Computational Models of the Heart 2012.

1.3.4 Contribution 4 - Improved Physical Modeling for Multi-
Resolution Segmentation (Chapters 8 and 9)

The Kalman tracking framework uses a motion model to predict the state of a tracked
surface in following frames. An intuitive motion model performing a regularization
toward an initial state was used in previous studies. We developed a physically
constrained motion model that produces more accurate state estimations and enables
tracking of higher resolution surface models.

The motion model definition requires a finite element analysis (FEA) to be
performed for the tracked geometric model. The tracking framework described in
[31] employs Doo-Sabin subdivision LV models. Therefore, we first introduced an
isoparametric FEA method for the Doo-Sabin subdivision surface models equipped
with thickness information. The proposed method describes basis functions for the
Doo-Sabin limit surfaces using an iterative algorithm. Then, it utilizes the defined
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basis functions for the isoparametric formulation of shell elements during the physical
simulation. A degenerated solids based approach is used to formulate the shell
elements. The accuracy of the physical simulation can be adjusted using basis
refinements without changing the model geometry or its parameterization. To evaluate
the convergence properties of the proposed isoparametric FEA method, surface forces
were applied to four distinct models at three resolution levels. Then, the deformed
Doo-Sabin model surfaces were compared against corresponding deformed reference
model surfaces. For a LV shaped model, the average unsigned distances between the
deformed Doo-Sabin and reference models were reported as 2.4mm, 0.6mm and 0.5mm
for the non-refined, refined and doubly refined models respectively. The experiments
show that the physical simulation accuracy of the Doo-Sabin surface models converges
rapidly with that of high resolution finite element models, which use classic hexahedron
and triangular prism elements. This project is described in the paper ”Isoparametric
Finite Element Analysis for Doo-Sabin Subdivision Models”, accepted by Graphics
Interface 2012.

Next, we extended the real-time Kalman tracking framework defined in [31]
by employing biomechanically constrained state transitions. The proposed method
first defines a stiffness matrix for the tracked Doo-Sabin surface model using the
isoparametric FEA. Then, it reformulates the state prediction stage of the tracking
framework to use the stiffness matrix information for performing physically constrained
tracking. In this study, we also introduced an optional statistical model improvement
stage for addressing the possible tracking problems due to poorly hypothesized model
shape and FEA parameters (e.g. Young’s modulus, Poisson’s ratio). The approach
was validated using a set of 29 recordings including 10 normal cases and 19 cases
from patients with heart diseases. A custom LV model with a very low control node
resolution was employed during the analyses to assess the effects of biomechanical
constraints on multi-resolution models. The average unsigned distances between the
tracked surface points and the reference surfaces were reported for the biomechanically
constrained and non-constrained trackers. (1) The tracker with no biomechanical
constraints produced 3.0mm, 3.1mm, and 3.5mm point-to-surface errors, and (2) the
tracker with the biomechanical constraints produced 3.1mm, 2.9mm and 2.9mm point-
to-surface errors for the non-refined, refined and doubly refined models respectively.
Our analyses show that the biomechanical constraints are necessary, especially
when the tracked model has a high control node resolution. The statistical model
improvements were also evaluated, and more than 20% point-to-surface error reduction
was reported for higher resolution surface models. The extension was described in the
paper “Doo-Sabin Surface Models with Biomechanical Constraints for Kalman Filter
Based Endocardial Wall Tracking in 3D+T Echocardiography”, accepted by British
Machine Vision Conference 2012.
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Doo-Sabin Surface Models with Biomechanical Constraints for Kalman Filter
Based Endocardial Wall Tracking in 3D+T Echocardiography. Accepted to the
British Machine Vision Conference (BMVC), 2012.

Related Work

1. Engin Dikici, Fredrik Orderud. Maximum Likelihood and James-Stein Edge
Estimators for Left Ventricle Tracking in 3D Echocardiography. Proceedings of
Machine Learning in Medical Imaging (MLMI), 2011.

1.4 Discussion

1.4.1 Graph Cuts Based Edge Measurements

The study introduced a graph-cut based endocardial edge detector (MFMC) and a
hybrid detector (Hybrid) combining MFMC and STEP. We observed that MFMC
performs better than STEP at ED, while STEP produces better results at ES. This
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might be due to the changing intensity characteristics of trabeculations during a
cardiac cycle. At ED, the trabeculations are filled with blood, and therefore cause
strong intensity changes across an endocardial surface model. STEP is prone to
including trabeculae in the myocardium, since it processes each intensity profile
independently. MFMC, on the other hand, leads to more consistent segmentation
results due to smoothness criteria constrained by the graph formulation. At ES, the
edge detection problem exhibits a different form. Due to the compression and folding,
the trabeculae appears as a part of the myocardium, making the intensity profiles more
continuous. The smoothness criterion, which is an advantage for MFMC at ED, turns
into a burden. The smoother intensity profiles eliminate the need for an additional
smoothing term, which also limits the agility of the model. On the other hand, STEP
performs well at ES. Accordingly, the hybrid approach produces superior segmentation
results during a cardiac cycle. There exists a significant EF estimation improvement
from the closest 6.2% error average produced by STEP to 3.8% using Hybrid.

The MFMC detector uses the push-relabel algorithm for finding a minimal cut,
which gives the endocardial edge positions. The method processes each frame in 78ms.

The implemented push-relabel algorithm has O
(
|V |3

)
time complexity, where V gives

the total number of graph nodes [38]. A more advanced algorithm for computing
a minimal cut, such as the one introduced in [39], might lead to a faster tracking
performance.

The reported surface measurement errors in the study [40] were higher compared
to the future studies: the average surface error at ED for the MFMC method was
2.62mm in [40] and 2.34mm in [41]. This is due to a difference between the surface
error validation metrics; point-to-point distances were used in [40], while point-to-
surface distances were used in the rest of our studies. Significant differences between
the number of recordings used during the validation studies might also cause some
discrepancies in the results.

1.4.2 Edge Measurement Filtering

The study introduced a local polynomial regression based edge filtering method (LPR),
which can be applied as a post-processing tool after an arbitrary edge detection
process. We chose to filter the step criterion edges as (1) STEP is a computationally
efficient approach allowing additional filtering time to still perform in real time, and
(2) it processes each intensity profile independently leading to discontinuous edge
measurements, which may greatly benefit from an edge filtering process.

The proposed approach was implemented for the first and second order local
polynomial regression models. The method description is provided in a degree-
independent fashion; hence generalization of the method to higher orders should be an
intuitive task. Increasing the order of a regression model lowers the bias component of
the mean square error (MSE) while increasing the variance component. Also, the
computation time increases with the filtering order; LPR-1 and LPR-2 processed
each frame in 23.7ms and 40.8ms respectively. This is due to the order dependent
dimensions of a design matrix, which is computed during the regression. Therefore,
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a regression order should be decided considering the bias, variance and computation
time related trade-offs. In a future study, the optimal kernel radius and regression
order might be found via a statistical study.

Comparative analyses showed that both LPR- 1 and LPR-2 lead to improved
surface and volumetric measurement accuracies over STEP. At ED, STEP, LPR-
1 and LPR-2 produced 2.94mm, 2.61mm (12% improvement) and 2.57mm (13%
improvement) mean surface errors. LPR-1 and LPR-2 filters also reduced the LV
cavity volume error of STEP at ED by 3.73% and 5% respectively. Comparable surface
and volumetric measurement improvements were also reported for the ES phase.

The control point resolution of the tracked model is another smoothing factor for
the Kalman tracking framework. Higher resolution Doo-Sabin surface models can
represent a wider range of surface deformations, which could benefit more from an
edge filtering process.

1.4.3 Maximum Likelihood Edge Measurements

We introduced ML based statistical edge detectors that combine the responses of
multiple detectors to improve endocardial edge detection accuracy. The proposed
approaches incorporate prior knowledge into the edge detection process, leading to
more accurate surface and volumetric measurements [41]. However, the statistical
methods might cause problems when the training dataset is not large enough to
cover shape variations of a tracked anatomy. The EB detector partially addresses
this limitation by using contextual priors to generate a bias factor on the prior
information. Another possible caveat is that employing multiple edge detectors causes
higher computation times. The STEP-ML detector exploits the computationally light
set of base detectors to avoid this issue.

The EB detector takes advantage of the Stein effect to improve the detection
accuracy of the ML detector. The Stein effect asserts that the estimation MSE can be
lowered using information from the full model. Accordingly, we computed the average
squared point-to-surface distances for both ML and EB during the evaluation. The EB
detector outperformed the ML detector at both ED and ES frames. The EB approach
is computationally efficient; finding a contextual prior and refining ML estimations
take ∼ 2ms per frame. Please note that the contextual prior is found using a convex
optimization technique.

The generalized STEP study showed that the higher order STEP detectors do
not outperform the classic STEP detector; 0th(the classic STEP detector), 1st and
2nd order step detectors produced 2.18mm, 2.17mm and 2.6mm average unsigned
surface errors respectively. The combined usage of these generalized detectors (STEP-
ML) lowered the average unsigned surface error to 2.02mm. STEP-ML also caused
significantly lower regional estimation bias than the generalized detectors. This is due
to the learned bias information stored in the ML model, which is factored in during
the ML estimations. STEP-ML produced comparable results with the ML approach
while reducing the processing time for each frame by over 42%.

The EB detector was implemented and tested using MG, STEP and MFMC as
the base detectors. In a future study, it might be evaluated with a base detector set
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including the generalized STEP detectors. As EB causes ∼ 2ms additional frame
processing time with an ML detector, it should track each frame in ∼ 48.6ms when
used with STEP-ML (with a 2.80 GHz Intel Core 2 Duo CPU).

The ML, EB and STEP-ML edge detectors calculate the base estimator bias and
weight properties at the ED and ES frames. Then, they interpolate these properties to
intermediate frames using a linear interpolation. However, these properties could be
learned at more than two cardiac cycle positions, and trigonometrically interpolated to
the complete cardiac cycle. The trigonometric interpolation would then take advantage
of the cyclic motion of the endocardial walls. This improvement might be investigated
in a future study.

1.4.4 Improved Physical Modeling for Multi-Resolution Seg-
mentation

We introduced an isoparametric FEA approach for Doo-Sabin surface models with
thickness information. There had been a variety of isoparametric formulations
proposed for other subdivision schemes in the literature; however, these methods could
not be modified for our case in intuitive manners. The isoparametric FEA method
proposed for Catmull-Clark subdivision solids [42] requires an additional hexagonal
meshing procedure prior to FEA for Doo-Sabin surface models. Our approach
eliminates the need for intermediate meshing tools by using a unified geometric
representation for the design and FEA stages. The isoparametric formulation
developed for Loop subdivision surfaces [43–45] inherit thin shell assumptions
neglecting the shear deformations, which are necessary for modeling the myocardial
deformations. On the other hand, our method factors in Mindlin plate theory to
properly simulate shear deformations.

The degenerated solids based A-I-J elements [46] were used during the physical
simulation of Doo-Sabin surface patches in our studies. The A-I-J element may
experience locking problems, where the element behaves extra stiff, particularly when
the shell is very thin [47]. Several methods can be used to avoid locking problems,
including reduced [48] and cross-reduced [49] integration techniques. Locking-free shell
elements for our framework might therefore be investigated in a future study.

Our analyses showed that the biomechanical constraints are necessary, especially
when the tracked model has a high control node resolution. This is due to the fact
that a model with higher complexity can benefit more from spatial regularization
during tracking, which is provided by biomechanical constraints. Accordingly, the
biomechanically constrained tracker allowed the segmentation accuracy to be stabilized
over the model resolution levels; it produced 3.5mm, 3.3mm and 3.3mm average
unsigned point-to-surface errors at ED for the non-refined, refined and doubly-
refined models respectively. The proposed statistical model improvement stage takes
advantage of higher model resolution levels as (1) the model node updates provide a
more realistic model shape to perform tracking, and (2) deformation modes learned
from control point distribution model (CPDM) improve the stiffness matrix accuracy.
The tracker using the statistical model improvements produced 3.2mm, 2.8mm and
2.6mm average unsigned point-to-surface errors at ED for the non-refined, refined and
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doubly-refined models respectively. The biomechanical constraints do not introduce
any noticeable computational burden for the tracker, since the stiffness and state
transition matrices are computed offline and only once for each model.

1.5 Conclusion

In this study, we have introduced a set of novel endocardial edge detectors for
3D+T echocardiography, using graph cuts, maximum likelihood, empirical Bayes and
generalized step criterion based approaches. We also proposed a polynomial regression
based filtering technique to further improve the edge detection accuracy. For physical
analysis of Doo-Sabin subdivision surface models, we developed an isoparametric FEA
method. Later, we used this concept for biomechanically constrained tracking of multi-
resolution Doo-Sabin surface models in a Kalman tracking framework.

The introduced methods have been successfully integrated into the state prediction
and update stages of a Kalman tracking framework. The accuracies of these methods
were evaluated by comparing the extracted meshes against reference meshes, which
were generated by a trained medical doctor using a semi-automatic segmentation tool
(4D AutoLVQ, GE Vingmed Ultrasound, Norway). The cross validation approach
was used for the evaluation of methods that require training process with pre-
segmented data. The analyses showed that the graph-cut based edge detector improves
endocardial detection accuracy at end-diastole, and the ML based edge detectors
improve detection accuracy for the whole cardiac cycle. Furthermore, these approaches
process each frame in either real-time (STEP-ML), or nearly real time (MFMC, ML,
EB). Polynomial regression based edge filtering was shown to reduce endocardial edge
tracking error, while providing a controller for the tradeoff between edge detection
bias and variance. The analyses also showed that the biomechanical constraints are
necessary for accurate tracking of subdivision surface models with high control node
resolutions.

The edge detection and physical modeling concepts have been validated for time
dependent segmentation of the endocardium in 3D+T echocardiography. However,
these approaches can be simply modified for the segmentation and tracking of a variety
of anatomical structures in ultrasound recordings. The introduced isoparametric FEA
formulation can be employed in engineering applications that use Doo-Sabin surface
models for computer aided geometric design and analysis.
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Chapter 2

Background Material
Engin Dikici
Norwegian University of Science and Technology, Trondheim, Norway

2.1 The Human Heart

The heart is the circulatory system’s pump that is responsible for maintaining the
blood flow throughout the body. The heart consists of (1) four chambers; the left
atrium, the left ventricle, the right atrium and the right ventricle, (2) valves to inhibit
the backflow of the blood, and (3) joining vessels. The left and right sides of the heart
both behave like pumps, and they are not directly connected with each other. Figure
2.1 shows an overview of the anatomy of the cardiac chambers and the direction of
the blood flow throughout the heart.

The blood flow for a healthy person can be briefly described as follows. First,
oxygenated blood from the lungs travels through the pulmonary veins and enters into
the left atrium. Blood then flows into the left ventricle by passing through a one-way
valve called the mitral valve. As the left ventricle contracts, it pushes blood to the
largest artery in the body, the aorta. The aortic valve between the left ventricle and
aorta inhibits backflow into the left ventricle during this stage. Oxygen-rich blood
is then carried to the body regions and organs through the arterial system. Next,
deoxygenated blood is returned to the right atrium through two large veins called the
superior vena cava and inferior vena cana, which drain the upper and lower parts of
the body respectively. Blood flows into the right ventricle through a one-way valve
called the tricuspid valve. As the right ventricle contracts, it passes blood into the
pulmonary artery, which carries deoxygenated blood back to the lungs.

The pumping of the heart is a repeating cycle of relaxation and contraction of
the heart muscle. A cardiac cycle consists of two phases called the systole and the
diastole. During the systole, the left and right atria first contract at nearly the same
time pumping blood into the left and right ventricles. Then, the right and left ventricles
contract to pump the blood to the lungs and body. During the diastole, blood fills
each of the atria and begins filling the relaxed ventricles.

For evaluation of global function of the heart, two metrics are commonly used:
stroke volume (SV) and ejection fraction (EF). SV gives the total amount of blood
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Figure 2.1: Cross-section of a heart with its internal structures. The blue arrow shows
the direction in which deoxygenated blood flows from the body to the lungs. The red
arrow shows the direction in which oxygen-rich blood flows from the lungs to the rest
of the body. Source: NHLBI.

pumped during a cardiac cycle. It is calculated by finding the difference between the
end diastolic (EDV) and end systolic (ESV) volumes of the left ventricle. EF is the
ratio between the stroke volume and the end diastolic volume of the left ventricle, and
measures the percentage of the ventricle being emptied in each cardiac cycle:

SV = EDV − ESV, (2.1)

EF =
SV

EDV
. (2.2)

2.2 Medical Ultrasound

Medical ultrasound is a widely used modality for imaging interior structures of the
body. It is portable, considered free of radiation risk, and inexpensive compared
to modalities such as magnetic resonance (MR) and computed tomography (CT).
Furthermore, it allows for acquisition of real-time images, providing instantaneous
visual guidance for many interventional procedures. The modality is based on a
pulse-echo approach. This involves transmitting focused ultrasound pulses from a
transducer into the body. Due to differences in acoustic impedances along the path
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of transmission, some of the pulses are then reflected back to the transducer as echos
while some continue to penetrate deeper. Received echo signals are then processed and
combined using beamformer to generate an image. The frequencies used in medical
ultrasound typically lie between 1 and 15MHz.

Most of the ultrasound transducers use an array of piezoelectric elements to
transmit and receive ultrasound pulses. These transducers utilize the fact that
piezoelectric crystals can convert electrical signals into mechanical vibrations, and vice
versa. During the transmit process, an electrical voltage is applied to the piezoelectric
elements, causing them to vibrate and generate ultrasonic waves. Then, during the
receive process, acoustical vibrations from the received echos induce electrical signals
across the crystals that is sampled and used for image formation.

The distance r between the transducer and the origin of an echo signal is determined
using the two-way transit time. By assuming a constant wave propagation speed c,
the distance is given as function of a two-way transit time t:

r (t) =
c · t
2
, (2.3)

where c ∼= 1540m/s for soft body tissue.
Transmitted ultrasound waves are partly transmitted to deeper structures, partly

reflected back to the transducer as echoes, partly scattered, and partly transformed
to heat. The amount of echo returned after hitting a tissue interface is determined
by (1) the angle of incidence, (2) dimensions of the reflecting structure, and (3)
a tissue property called acoustic impedance Z given by Z = ρc, where ρ is the
density of the tissue. Structures that are smooth and larger than the wavelength
cause partially reflected echo that travels back to the transducer and a partially
transmitted pulse that travels deeper into the tissue body. This type of reflection
is called specular reflection. The amount of reflected echo therefore depends on the
angle of incident and difference in acoustic impedances between two mediums. For
non-perpendicular incidence at an interface between tissues with different acoustic
impedances, the transmitted pulse is deflected by an angle described by Snell’s law.
If the ultrasound pulse encounters reflectors whose dimensions are smaller than the
ultrasound wavelength, then omnidirectional scattering occurs, which does not depend
on angle of incidence.

Sector (2D) and volumetric (3D) images can be acquired by transmitting beams
that are steered in different directions to cover a region of interest. An array of
transducer elements can be focused by controlling the phase of a signal associated
with each element. Application of distinct time delays to excite each element focuses
the transmitted beam at a particular range. The amount of delay for a given element
depends on the distance between the element and the focal point (see Figure 2.2). On
reception, the focus can be swept along the beam by dynamically setting the time
delays associated with the elements; hence, their position coincide continuously with
that of the instantaneous origin of the echoes.

The spatial resolution of the acquired images can be described in the lateral
and axial directions. The lateral resolution is defined as the ability of the system
to distinguish two reflectors in the direction perpendicular to the direction of the
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Figure 2.2: Beam focusing by adding time delays across the array of piezoelectric
elements.

ultrasound beam. The 3dB lateral resolution is given by,

Resl =
λ |r|
D

, (2.4)

where λ is the wavelength of the ultrasound beam, D is the transducer diameter, and
r is the imaging depth. Thus, a larger transducer typically produces a higher lateral
resolution. Please note that the lateral resolution is dependent on the depth, which
leads to images with a spatially variant resolution for a fixed transducer size. This
issue can be partly addressed by using dynamic focusing [1]. The resolution in the
direction parallel to the ultrasound beam is given by the axial resolution,

Resa =
λ

2B
, (2.5)

where B is the fractional bandwidth of the imaging system. The division by two is
due to the pulse-echo response of the system.

The temporal resolution of the images defines the ability to accurately locate
structures at a particular time position. The temporal resolution, or frame rate, is
limited by the sweep speed of the beam, which is limited by the speed of sound. Frame
rates of ultrasound imaging systems typically lie between 30 and 100Hz.

A more detailed discussion on ultrasound image formation topics can be found in
[1].
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2.3 Graph Cuts and Segmentation

The max-flow/min-cut based endocardial edge detector (MFMC) was introduced in
[2], and used to develop more advanced detectors in [3, 4]. This section provides a
theoretical background for the graph cut based segmentation concept. Most of the
descriptions in this section are based on [5] and [6].

2.3.1 Exact Maximum a Posteriori Classification

The endocardial edge detection problem can be formulated as a binary classification
task, where xi denotes the correct class for the ith intensity sample. Each sample either
belongs to the inside (xi = 0) or outside (xi = 1) LV cavity class. x = [x1, x2, . . . , xn]
then gives the correct binary classification for a set of n samples. A Bayesian
formulation attains a prior distribution p (x) for all samples, that can be assumed
to be a locally dependent Markov random field (MRF) given by,

p (x) ∝ exp

1

2

n∑
i=1

n∑
j=1

βij {xixj + (1− xi) (1− xj)}

 , (2.6)

where (1) βii = 0, (2) βij = βji > 0 if ith and jth samples are neighbors, and
βij = βji = 0 otherwise [5]. This formulation helps providing a smooth classification
over the data by penalizing classification differences between the neighboring samples.

The observed intensity value vector for all samples can be represented as y =
[y1, y2, . . . , yn]. Each yi depends on x only through xi with a known conditional
density function g (yi—xi). Therefore, the likelihood function l (y—x) of the data can
be defined as [5],

l (y—x) =

n∏
i=1

g (yi|xi) =

n∏
i=1

g (yi|1) g (yi|0)
1−xi . (2.7)

Combining the likelihood l (y—x) with the prior distribution p (x), in accordance
with Bayes’ theorem, gives the posterior distribution,

p (x|y) ∝ l (y—x) p (x) . (2.8)

The maximum a posteriori (MAP) estimate seeks x̂ that maximizes ln p (x—y)
given by,

ln p (x—y) =

n∑
i=1

λixi +
1

2

n∑
i=1

n∑
j=1

βij {xixj + (1− xi) (1− xj)} , (2.9)

where λi = ln {g (yi|1) /g (yi|0)} is the log-likelihood ratio at sample i. Please note
that there are 2n possible values for ln p (x—y), making a direct search for x̂ infeasible
in most situations. Geman and Geman proposed a simulated annealing based method
for this maximization task in [7], but this method is riddled by suboptimal solutions
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Figure 2.3: (A) Graph representation for a 1-D image with seven intensity samples.
Intensity sample nodes are represented by circles, the source node is represented by
a square, the sink node is represented by a triangle, and edge capacities are denoted
next to the edges. (B) Cut for the graph represented in A. The cut is represented by a
dotted red curve. It has the total capacity given by C (x) = −λ2 +β45 +λ6, computed
using Equation 2.10.

as it commonly gets trapped in local maximas. An alternative solution introduced by
Greig et al. [5] finds the exact maxima via graph cuts in polynomial time complexity.

Greig’s solution first formulates a graph with n+ 2 nodes; n nodes corresponding
to the intensity samples, and 2 terminal nodes for the abstract source and sink nodes.
There is a directed edge from the source to the ith non-terminal node with capacity λi,
if λi ≥ 0; otherwise, there is a directed edge from the ith non-terminal node to the sink
with capacity −λi. There is an undirected edge between the ith and jth non-terminal
nodes with capacity βij if ith and jth samples are neighbors (see Figure 2.3-A).

Let A = {source node} ∪ {i : xi = 1} and B = {sink node} ∪ {i : xi = 0}, the set
of edges with vertices in both A and B is then called a cut (see Figure 2.3-B). A cut
has a total capacity given by,

C (x) =

n∑
i=1

xi max (0, −λi) +

n∑
i=1

(1− xi) max (0, λi) +
1

2

n∑
i=1

n∑
j=1

βij (xi − xj)2
.

(2.10)
It can be shown that C (x) ∝ − ln p (x—y). Therefore, the minimal cut maximizes

ln p (x—y), and produces the MAP estimate for this binary classification task. A node
is classified as inside of the LV cavity if it is on the source side; otherwise, it is classified
as outside of the LV cavity. An endocardial edge is found at a position where the node
classification alters.

The maximum flow and minimal cut problems are dual to each other; hence, the
minimal cut can be found by computing the maximum flow for a given graph. There
have been a variety of maximum flow algorithms proposed in the literature [8–10].
The push-relabel algorithm introduced by Goldberg and Tarjan [6] is used in the
MFMC endocardial edge detector [2] due to its implementation simplicity and decent
computational complexity. The details of this approach are provided in the following
section.

26



Chapter 2. Background Material

2.3.2 Push-Relabel Algorithm of Goldberg and Tarjan

Maximum Flow Problem

Let G = (V, E) be a directed graph with a vertex set V and an edge set E. The sizes
of V and E are given by n and m respectively. G is a flow network if it has (1) the
source s and sink t nodes, where a flow is defined between them, and (2) a positive real
valued capacity defined for each edge (v, w) ∈ E as c (v, w). The capacity definition
is extended to all vertex pairs by setting c (v, w) = 0 if (v, w) /∈ E. A flow f on G is
a real valued function satisfying the following constraints:

1. Capacity: f (v, w) ≤ c (v, w) for all (v, w) ∈ V × V .

2. Anti-symmetry: f (v, w) = −f (w, v) for all (v, w) ∈ V × V .

3. Flow conservation:
∑
u∈V f (u, v) = 0 for all v ∈ V − {s, t}.

The value of a flow is the net flow into the sink: |f | =
∑
u∈V f (u, t). The maximum

flow is the highest value for a flow on G.

Generic Push-Relabel Algorithm

The push-relabel algorithm computes the maximum flow for a given graph G. The
method uses a set of solution specific concepts described below,

• Network preflow: A preflow is a real valued function that satisfies the capacity,
anti-symmetry constraints, and a weakened version of the flow conservation
constraint given by

∑
u∈V f (u, v) ≥ 0 for all v ∈ V − {s}.

• Excessive flow: It gives the net flow into v as e (v) =
∑
u∈V f (u, v).

• Residual capacity: The residual capacity of a vertex pair is given by r (v, w) =
c (v, w)− f (v, w). A pair (v, w) is called a residual edge if r (v, w) > 0.

• Valid labeling: A valid labeling d is a function from the vertices to the non-
negative integers and infinity, such that d (s) = n, d (t) = 0 and d (v) ≤ d (w)+1
for every residual edge (v, w).

• Active vertices: A vertex is called active if v ∈ V − {s, t}, d (v) < ∞, and
e (v) > 0.

The push-relabel algorithm begins by initializing a preflow f that is equal to the edge
capacity on each edge leaving the source, and zero on all other edges. Next, it initializes
the labels and excessive flows. After the initialization stage, the algorithm performs the
basic operations, push and relabel, (see Figure 2.4) in an iterative fashion until there
are no active vertices left. The basic operations modify the preflow f and the labeling
d. A push from v to w increases f (v, w) and e (w) by δ = min (e (v) , r (v, w)), and
decreases f (w, v) and e (v) by the same amount. The push is saturating if it causes
r (v, w) = 0, and it is non-saturating otherwise. A relabeling operation on v sets the
label of v to the largest value allowed by the valid labeling constraints. A pseudo code
for the algorithm is given in Figure 2.5.

27



2.3. Graph Cuts and Segmentation

Push(v, w)
Applicability : v is active, r (v, w) > 0 and d (v) = d (w) + 1.
Action: Send δ = min (e (v) , r (v, w)) units of flow from v to w as follows:

• f (v, w)← f (v, w) + δ, f (w, v)← f (w, v)− δ,

• e (v)← e (v)− δ, e (w)← e (w) + δ.

Relabel(v)
Applicability : v is active, ∀w ∈ V , r (v, w) > 0⇒ d (v) ≤ d (w).
Action: d (v)← min {d (w) + 1— (v, w) ∈ E}. (if the minimum is over an empty set,
then d (v)←∞).

Figure 2.4: The basic operations.

Max-Flow (V, E, s, t, c)
¡Initialize preflow¿
∀ (v, w) ∈ (V − {s})× (V − {s}) do begin
f (v, w)← 0; f (w, v)← 0;

end
∀v ∈ V do begin
f (s, v)← c (s, v) ;
f (v, s)← −c (s, v) ;

end
¡Initialize labels and excessive flows¿
d (s)← n;
∀v ∈ V − {s} do begin
d (v)← 0;
e (v)← f (s, v) ;

end
¡Push and relabel loop¿

while ∃ a basic operation that applies do
Perform the applicable basic operation

end
return f

Figure 2.5: The generic push-relabel algorithm.
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Discharge
Applicability : Q 6= empty.
Action: Remove the vertex v from the front of Q.

Repeat
Push/relabel(v)
if w becomes active during this push/relabel operation then

add w to the rear of Q
until e (v) = 0 or d (v) increases.
if v is still active then add v to the rear of Q.

Figure 2.6: The discharge operation.

First-in First-out Implementation

The selection of the vertices on which the push/relabel is performed has a direct impact
on the computational efficiency of the algorithm. The first-in first-out (FIFO) strategy
is commonly adopted for this stage. The queue Q of vertices with excessive flows are
kept, and the algorithm is executed until Q is empty.

In each iteration, (1) a vertex v from the front of Q is removed, (2) push/relabel
operations to v until the excess becomes zero or the label of the vertex increases are
performed, and (3) newly active vertices are added to the rear of Q (including v if it
is still active). This operation is called the discharge operation (see Figure 2.6).

The computational complexity of the push-relabel algorithm with FIFO implemen-
tation is O

(
n3
)

[6].
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2.4 Finite Element Analysis using Degenerated
Shell Elements

This thesis introduces an isoparametric finite analysis method for Doo-Sabin surface
models [11] together with an application of this approach for tracking LV structures
in 3D+T echocardiography recordings [12]. The biomechanically constrained tracker
introduced in [12] uses FEA to produce a stiffness matrix for a given Doo-Sabin
endocardial model, then formulates Kalman filter using this information. The method
aims to regulate the motion pattern of tracked objects, without providing a complete
finite element model to calculate the stress and strain distribution in the LV wall.

In [11], the formulation of degenerated solids for isoparametric FEA is briefly
introduced, but some of the mathematical derivations are referred from other sources
due to space limitations. This section provides a more detailed description of the
concept based on [13–15].

2.4.1 Degenerated Solids

The degenerated solids based FEA approach was first introduced by Ahmad et al. [15].
The method reduces 3D finite elements to 2D by deleting the intermediate vertices in
the element’s thickness direction, and then by projecting the vertices on each surface
to the mid surface (see Figure 2.7). However, the position information for the deleted
vertices is utilized to perform the analysis in 3D. The approach is developed with the
following assumptions:

1. The normal strains and stresses in the direction of element thickness are always
zero. Therefore, the strain energy associated with the stresses perpendicular to
the mid surface is ignored.

2. The mid surface normals may not remain as normals after a deformation, however
they remain straight as in the Mindlin plate theory [16]. Hence, the shear strain
energy needs to be considered during the analysis.

Figure 2.7: Illustrations of (A) 4-noded and (B) 8-noded degenerated shell elements.
The projected mid surface vertices are represented by filled blue circles, and the mid
surface borders are represented by dashed red curves.
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2.4.2 Finite Element Formulation of Doo-Sabin Surface Patches

Geometric Definition of a Shell Element

The Doo-Sabin surface models are formed using bi-quadric B-spline surface patches
[17]. The control vertices representing a surface patch are given by Q =

[q1, q2, . . . ,qm]
T

, where m gives the total number of control vertices for a patch,
and qi (i ≤ m) gives the 3D physical coordinates for the ith control vertex. Each
physical surface position on a surface patch is uniquely defined using natural patch
coordinates (ξ, η) that vary between −1 and 1. The Doo-Sabin basis functions provide
a mapping between the natural and physical coordinate systems as,

x =

m∑
i=1

bi (ξ, η) qi, (2.11)

where bi is the basis function for the ithcontrol vertex, and x = [x, y, z]
T

is the mapped
physical coordinate vector [18].

In degenerated solids approach, elements are described using three surfaces, namely
the top, bottom and mid. Top and bottom surfaces are defined on the positive and
negative surface normal directions using a similar basis function as the mid surface.
These surfaces’ control vertex matrices are,

Qtop =
[
qtop1 , qtop2 , . . . , qtopm

]T
, (2.12)

Qbottom =
[
qbottom1 , qbottom2 , . . .qbottomm

]T
, (2.13)

where Q =
(Qtop+Qbottom)

2 .
Assuming that an additional natural parameter ζ gets values between -1 and 1

on the respecting faces of the element (ζ = 0 gives the mid surface); the relationship
between the physical and natural coordinates is given by,

x =

m∑
i=1

bi (ξ, η)
(1 + ζ)

2
qtopi +

m∑
i=1

bi (ξ, η)
(1− ζ)

2
qbottomi , (2.14)

where qtopi and qbottomi are the ith control vertices for the top and bottom surfaces
respectively. Using the mid surface control vertices, Equation 2.14 can alternatively
be written as

x =

m∑
i=1

bi (ξ, η)

{
qi + ti

ζ

2
v3i

}
, (2.15)

with

ti =
∣∣qtopi − qbottomi

∣∣ and v3i =
qtopi − qbottomi∣∣qtopi − qbottomi

∣∣ ,
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where ti and v3i = [l3i, m3i, n3i]
T

denote the surface thickness and normal direction
for the ith control vertex respectively.

Local Coordinate System

During the FEA of the shell structures, a local coordinate system (x′, y′, z′) of the
element needs to be determined at each mid surface position (ξ, η). By applying a
linear interpolation, an orthogonal set of coordinate axes for any point in the element
are given by,

v3 (ξ, η) =
e1 (ξ, η)× e2 (ξ, η)

|e1 (ξ, η)× e2 (ξ, η)|
, (2.16)

v1 (ξ, η) =
e1 (ξ, η)

|e1 (ξ, η)|
, (2.17)

v2 (ξ, η) = v1 × v3, (2.18)

where

e1 (ξ, η) =

m∑
i=1

∂bi (ξ, η)

∂ξ
qi and e2 (ξ, η) =

m∑
i=1

∂bi (ξ, η)

∂η
qi. (2.19)

The coordinate transformation matrix, also called the direction cosine matrix,
between the physical and local coordinates can be written as,

DC = [v1, v2, v3] =

 l1 l2 l3
m1 m2 m3

n1 n2 n3

 . (2.20)

Displacement Field

The displacement field definition is derived from Equation 2.15; the displacement field
u = [u, v, w]

T
of any point in the element is given by,

u =

m∑
i=1

bi (ξ, η)

ui + ti
ζ

2

 n3iθyi −m3iθzi
−n3iθxi − l3iθzi
m3iθxi − l3iθyi

 , (2.21)

where (1) ui = [ui, vi, wi]
T

is the displacement vector for the ith control vertex, and
(2) θxi, θyi and θzi are scalar rotations in radians around x, y and z axes respectively.
The rotation parameters enable the rotation of the axes defined between each qtopi and
qbottomi , such that the shearing deformations can be applied on the element.

Strains and Stresses

Strain is a measure of deformation in terms of relative displacement of particles in the
element. The strain vector ε′ = [εx′ , εy′ , γx′y′ , γx′z′ , γy′z′ ]

T
is defined using the first

partial derivatives of the local displacement vector u′ = [u′, v′, w′]
T

by,
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ε′ =

[
∂u′

∂x′
,
∂v′

∂y′
,
∂u′

∂y′
+
∂v′

∂x′
,
∂u′

∂z′
+
∂w′

∂x′
,
∂v′

∂z′
+
∂w′

∂y′

]T
, (2.22)

where (1) εx′ and εy′ are the normal strains in x′ and y′ directions, and (2) γx′y′ , γx′z′

and γy′z′ are the shear strains in the x′y′, x′z′ and y′z′ planes respectively [13]. Please
note that the normal strain in z′ direction is ignored due to the first shell assumption.
For a clear formulation, the strain vector is split into two vectors as,

ε′m = [εx′ , εy′ , γx′y′ ]
T
, (2.23)

ε′s = [γx′z′ , γy′z′ ]
T
. (2.24)

Stress is a measure of the average force per unit area for the element. The stress
components that correspond to the provided strain components are given by,

σ′ = [σx′ , σy′ , τx′y′ , τx′z′ , τy′z′ ]
T
. (2.25)

The relation between the strain and stress vectors can be formed using the
Generalized Hooke’s Law, which states that the components of stress are linearly
related to the components of strain by σ′ = Dε′. The elasticity matrix D is defined
for an isotropic material as,

D =
E

(1 − µ2)


1 µ 0 0 0
µ 1 0 0 0
0 0 1−µ

2
0 0

0 0 0 1−µ
2

0
0 0 0 0 1−µ

2

 , (2.26)

where E is the Young’s modulus and µ is the Poisson’s ratio. The elasticity matrix
can also be represented as,

D =

[
Dm 0

0 Ds

]
, (2.27)

with

Dm =
E

(1− µ2)

 1 µ 0
µ 1 0

0 0 1−µ
2

 and Ds =
E

(1− µ2)

[
1−µ

2 0

0 1−µ
2

]
.

Jacobian Matrix

The computation of a stiffness matrix for an isoparametric element requires the
Jacobian of three-dimensional transformations that connect the differentials of
{x, y, z} to those of {ξ, η, ζ}. The Jacobian matrix J is given by,
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J =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

 , (2.28)

which is computed using Equation 2.15.

Assembly of Patch Element Stiffness Matrix

Using the standard variational formulation, the stiffness matrix of an element is given
by:

Ke =

∫∫∫
BTDBdxdydz, (2.29)

where the strain-displacement matrix B relates the strains to control vertex
displacements (δ) by ε′ = Bδ. The components of ε′ can be found by transforming
physical displacement derivatives into local displacement derivatives as, ∂u′

∂x′
∂v′

∂x′
∂w′

∂x′
∂u′

∂y′
∂v′

∂y′
∂w′

∂y′

∂u′

∂z′
∂v′

∂z′
∂w′

∂z′

 = DCT

 ∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

DC, (2.30)

where the derivatives of the displacements with respect to the global axes are given
by a matrix relation, ∂u

∂x
∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

 = J−1


∂u
∂ξ

∂v
∂ξ

∂w
∂ξ

∂u
∂η

∂v
∂η

∂w
∂η

∂u
∂ζ

∂v
∂ζ

∂w
∂ζ

 . (2.31)

To compute B, Equations 2.23 and 2.24 are written as,

ε′m =

m∑
i=1

B1miui + [B2mi + ζB3mi]

 θxi
θyi
θzi

 , (2.32)

ε′s =

m∑
i=1

B1siui + [B2si + ζB3si]

 θxi
θyi
θzi

 , (2.33)

where (1) B1mi and B1si are the strain-displacement matrices formed by considering
only the local displacements u′, v′ and w′, and (2) B2mi, B3mi, B2si and B3si are the
strain-displacement matrices formed by considering only the rotations θxi, θyi and θzi.
Due to the first shell assumption, B2mi is zero. The other terms are given by,

B1mi =


l1B
′ (1, i) m1B

′ (1, i) n1B
′ (1, i)

l2B
′ (2, i) m2B

′ (2, i) n2B
′ (2, i)

l1B
′ (2, i) +

l2B
′ (1, i)

m1B
′ (2, i) +

m2B
′ (1, i)

n1B
′ (2, i) +

n2B
′ (1, i)

 , (2.34)
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B3mi =
ti

2


B′ (1, i) (m3in1 − n3im1) B′ (1, i) (n3il1 − l3in1) B′ (1, i) (l3im1 −m3il1)
B′ (2, i) (m3in2 − n3im2) B′ (2, i) (n3il2 − l3in2) B′ (2, i) (l3im2 −m3il2)

B′ (2, i) (m3in1 − n3im1)+
B′ (1, i) (m3in2 − n3im2)

B′ (2, i) (n3il1 − l3in1)+
B′ (1, i) (n3il2 − l3in2)

B′ (2, i) (l3im1 −m3il1)+
B′ (1, i) (l3im2 −m3il2)

 ,

(2.35)

B1si =


l1B
′ (3, i) +

l3B
′ (1, i)

m1B
′ (3, i) +

m3B
′ (1, i)

n1B
′ (3, i) +

n3B
′ (1, i)

l2B
′ (3, i) +

l3B
′ (2, i)

m2B
′ (3, i) +

m3B
′ (2, i)

n2B
′ (3, i) +

n3B
′ (2, i)

 , (2.36)

B2si =
ti
2
biB
′′
[
m3ini − n3imi n3ili − l3ini l3imi −m3ili
m3in2 − n3im2 n3il2 − l3in2 l3im2 −m3il2

]
, (2.37)

B3si =
ti

2


B′ (3, i) (m3in1 − n3im1)+
B′ (1, i) (m3in3 − n3im3)

B′ (3, i) (n3il1 − l3in1)+
B′ (1, i) (n3il3 − l3in3)

B′ (3, i) (l3im1 −m3il1)+
B′ (1, i) (l3im3 −m3il3)

B′ (3, i) (m3in2 − n3im2)+
B′ (2, i) (m3in3 − n3im3)

B′ (3, i) (n3il2 − l3in2)+
B′ (2, i) (n3il3 − l3in3)

B′ (3, i) (l3im2 −m3il2)+
B′ (2, i) (l3im3 −m3il3)

 ,

(2.38)

where

B′ (1, i) =
∂bi
∂x

l1 +
∂bi
∂y

m1 +
∂bi
∂z

n1, (2.39)

B′ (2, i) =
∂bi
∂x

l2 +
∂bi
∂y

m2 +
∂bi
∂z

n2, (2.40)

B′ (3, i) =
∂bi
∂x

l3 +
∂bi
∂y

m3 +
∂bi
∂z

n3, (2.41)

B′′ = l3J13 +m3J23 + n3J33. (2.42)

Accordingly,

ε′ =

[
ε′m
ε′s

]
=

m∑
i=1

[
B1mi ζB3mi

B1si B2si + ζB3si

]
δ, (2.43)

with δ = [ui, vi, wi, θxi, θyi, θzi]
T

.
The infinitesimal volume computed in physical coordinates can be expressed in

terms of the volume in natural coordinates as dxdydz = |J| dξdηdζ. Finally, Ke =∫∫∫
BTDB |J| dξdηdζ can be numerically estimated by Gauss Legendre quadrature

rules. Usage of two samples in the ζ direction and a minimum of four samples in both
the ξ and η directions has been provent to be sufficient for thin shell element stiffness
matrix calculations for most purposes [15].
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2.5 Kalman Filter Based Tracking

This section provides a brief overview on Bayesian tracking, Kalman filter, extended
Kalman filtering, information filter and Kalman smoothing concepts. The descriptions
in this section are based on [19–21], and serve as the theoretic foundation for the
Kalman filter-based approach for the tracking of cardiac chambers in this thesis.

2.5.1 State Space Modeling and Bayesian Estimation

A generalized non-linear state space model can be represented using,

xk+1 = f (xk, uk, wk) , (2.44)

zk = h (xk, vk) , (2.45)

where (1) f and h are the governing state and output functions, (2) xk is the system
state, (2) uk is the system input, (3) zk is the measurement, and (4) wk and vk are
the stochastic state and measurement noise vectors at the discrete time k.

The recursive Bayesian tracking approach estimates xk using the posterior
probability distribution function (pdf) given by p (xk— z1:k). For this task, it
computes p (xk— z1:k) via recursive prediction and update stages, where the initial
distribution p (x0— z0) is assumed to be known.

The prediction stage finds the prior pdf given by,

p (xk— z1:k−1) =

∫
p (xk— xk−1) p (xk−1— z1:k−1) dxk−1, (2.46)

which is solved using (1) the posterior pdf p (xk−1— z1:k−1), and (2) the probabilistic
model of the state transition p (xk— xk−1) that is defined using the Equation 2.44.
Please note the Equation 2.44 describes a first order Markov process.

The update stage employs the measurement zk, and computes the posterior pdf
given by,

p (xk— z1:k) =
p (zk|xk) p (xk— z1:k−1)

p (zk| z1:k−1)
, (2.47)

where (1) the likelihood function p (zk|xk) is derived using the Equation 2.45, and
(2) the normalizing constant p (zk| z1:k−1) depends on the likelihood function as
p (zk| z1:k−1) =

∫
p (zk|xk) p (xk— z1:k−1) dxk.

Optimal Bayesian estimation depends on computation of exact solutions to
Equations 2.46 and 2.47 in a recursive fashion. In many situations, the solution
unfortunately cannot be determined analytically. However, for a limited set of
system definitions with linear functions and/or discrete state, approaches including
the Kalman and grid-based filters can produce optimal estimates. If the analytic
solution is intractable, extended Kalman, particle and approximate grid-based filters
can be used to approximate the optimal Bayesian estimate.
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2.5.2 Kalman Filter

The Kalman filter was invented in 1960 by Rudolph E. Kalman as a technique for
filtering and prediction in linear systems subject to Gaussian noise [20]. It can be
shown that the posterior pdf is a Gaussian, which can be parametrized using a mean
and a covariance, if the following three properties hold:

1. f (xk, uk, wk) is a linear function of xk, uk and wk,

2. h (xk, vk) is a linear function of xk and vk,

3. The state and measurement noise vectors w and v are uncorrelated, white
Gaussian processes with zero mean.

Following these assumptions, the system can be represented as,

xk+1 = Fkxk + Bkuk + wk, (2.48)

zk = Hkxk + vk, (2.49)

wk ∼ N (0, Qk) , vk ∼ N (0, Rk) , (2.50)

E
(
wiw

T
j

)
= Qiδi−j, E

(
viv

T
j

)
= Riδi−j, (2.51)

E
(
wkv

T
k

)
= 0, (2.52)

where (1) Fk, Bk and Hk are known matrices that can be time-dependent, and (2)
Qk and Rk are covariance matrices corresponding to the second order statistics of wk

and vk respectively. As the input has a Gaussian pdf and the model is linear, the state
xk and measurement zk vectors also have Gaussian pdfs, which are fully described by
their means and covariances. Therefore, the recursive process, defined using Equations
2.46 and 2.47, is given by,

p (xk| z1:k−1) = N
(
xk; x̄k, P̄k

)
, (2.53)

p (xk| z1:k) = N
(
xk; x̂k, P̂k

)
. (2.54)

where

x̄k = Fkx̂k−1 + Bkuk, (2.55)

P̄k = FkP̂k−1F
T
k + Qk, (2.56)

are computed during the prediction stage, and

Kk = P̄kH
T
k

(
HkP̄kH

T
k + Rk

)−1
, (2.57)

x̂k = x̄k + Kk (zk −Hkx̄k) , (2.58)

P̂k = (I−KkHk) P̄k, (2.59)
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are computed during the update stage. (1) x̄k and x̂k are called the prior and

posterior state estimates, (2) P̄k and P̂k are called the prior and posterior state error
covariances, and (3) Kk is called the Kalman gain matrix for the time step k. These
equations are recognized as the Kalman filter [22].

The Kalman filter gives the optimal solution to the linear estimation problem if
the given assumptions hold, where the optimality is provided in a least squares (LS)
sense. For situations where the posterior pdf is not a Gaussian distribution, the filter
is not guaranteed to be optimal [19].

2.5.3 Extended Kalman Filter

In many situations, the model cannot be represented using linear functions; hence,
the governing state and output functions are nonlinear. The extended Kalman filter
(EKF) addresses the problem by linearizing the model definition around the current
mean and covariance estimates.

The EKF approximates the prior and posterior pdfs as,

p (xk| z1:k−1) ≈ N
(
xk; x̄k, P̄k

)
, (2.60)

p (xk| z1:k) ≈ N
(
xk; x̂k, P̂k

)
, (2.61)

where

x̄k = f (x̂k−1, uk, 0) , (2.62)

P̄k = F̂kP̂k−1F̂
T
k + Qk, (2.63)

are computed during the prediction stage, and

Kk = P̄kĤ
T
k

(
ĤkP̄kĤ

T
k + Rk

)−1

, (2.64)

x̂k = x̄k + Kk (zk − h (x̄k, 0)) , (2.65)

P̂k =
(
I−KkĤk

)
P̄k, (2.66)

are computed during the update stage. (1) f and h are nonlinear functions, and (2)

F̂k and Ĥk are the Jacobians of f and h given by,

F̂k = Jxf (x, u, w) =
∂f (x, u, w)

∂x
|x̂k,uk,0, (2.67)

Ĥk = Jxh (x, v) =
∂h (x, v)

∂x
|x̄k,0 . (2.68)

The represented EKF uses a Taylor expansion where only the first term is utilized.
It is possible to utilize more terms to perform better approximations for the f and h
functions at the cost of additional computational complexity.

38



Chapter 2. Background Material

2.5.4 Information Filter

The information filter is an alternative formulation of the Kalman filter, preferred
when either the measurement vector is large compared to the state vector, or the
initial system state is unknown. The prediction step of the approach is unchanged
from the conventional Kalman filter as,

x̄k = Fkx̂k−1 + Bkuk, (2.69)

P̄k = FkP̂k−1F
T
k + Qk. (2.70)

The update stage is modified to use the terms,

P̂−1
k = P̄−1

k + HT
kR−1

k Hk, (2.71)

P̂−1
k x̂k = P̄−1

k x̄k + HT
kR−1

k zk, (2.72)

where the posterior state estimate and its error covariance are found as,

P̂k =
(
P̄−1
k + HT

kR−1
k Hk

)−1
, (2.73)

x̂k = P̂k

(
P̄−1
k x̄k + HT

kR−1
k zk

)
. (2.74)

The formulation sums the measurements into the information matrix HTR−1H
and information vector HTR−1z. Using the Equation 2.74, it can be shown that the
Kalman gain for the information filter is P̂kH

T
kR−1

k , which is algebraically equivalent
to the Kalman gain given in Equation 2.57.

The approach avoids the problem of inverting matrices of the size of the
measurement covariance matrix. Instead, matrices with the same dimensions as the
state error covariance matrix are inverted. In cases where there is no information about
the initial state, the entries of P̂0 will contain very large values in a conventional
Kalman filter, which might lead to numerical instability during initialization. The
information filter avoids this problem by using the inverse of the initial state error
covariance matrix that can be initialized to zero.

2.5.5 Kalman Smoother

The conventional Kalman filter utilizes measurements acquired up until the current
time position k to compute state estimates using the posterior distribution given by
p (xk| z1:k). If future measurements are also available, such that z1:k+q is known where
q > 0, then a Kalman filter is not able to incorporate these future measurements to
improve estimation accuracy. The Kalman smoother [23] addresses this problem by
computing state estimates based on all available measurements both before and after
k. It provides an optimal estimator for p (xk| z1:k+q) given that the same linearity and
Gaussian assumptions as the regular Kalman filter hold for a given system [19].
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The fixed-interval and fixed-lag smoothers are two of the commonly used Kalman
smoothing approaches. The fixed-interval smoother performs the smoothing in batch
mode using all measurements within 0 ≤ q ≤ k in a single run. The fixed-lag smoother
performs smoothing for a time position that is prior to the current measurement by a
fixed number of time steps, meaning that q is fixed.

Fraser and Potter introduced a fixed-interval smoother formulation that combines
two Kalman filters running in forward and backward time directions [24]. This idea
is extended in [20] for fixed-lag smoothing with reasonably short fixed lags. This
interpretation of the smoothers is called the forward-backward smoother.

Forward-Backward Interpretation of the Fixed-Lag Kalman Smoother

The forward-backward smoother employs two Kalman trackers, the forward and
backward filters, for estimating the state vector xk at time step k. The forward tracker
processes the measurements in the forward time direction, giving the processing order
of z1, z2, . . . , zk. The posterior estimate for time step k produced by the forward
tracker is shown as,

x̂k = x̂ (k|k) = E [xk|z1, z2, . . . , zk] . (2.75)

The posterior error covariance matrix of x̂k is given by,

Pk = E
[
(xk − x̂k) (xk − x̂k)

T
]
.

The backward tracker processes the measurements in the backward time direction
starting from a future time point, giving the processing order of zk+q, zk+q−1, . . . , zk+1

for a predefined lag value of q. The backward filter is initialized with no prior
information, where the diagonal entries of the initial error covariance matrix are set
very large and the off-diagonal entries are set as zeros.

Assuming that the state transition matrix for the forward tracker is A,
the backward filter from [24] computes a prior state estimate for step g ∈
{k, k + 1, . . . , k + q − 1} by,

x̂∗bg = A−1x̂b(g+1), (2.76)

where x̂b(g+1) is the backward filter’s posterior estimate for time step g + 1. If the
forward filter uses the state transition matrix only for the regularization purposes;
pulling state estimations toward an initial state, then the backward tracker should not
invert the state transition matrix for computing the prior estimates and it should use
the similar state transition matrix as the forward filter.

The prior estimate for time step k produced by the backward tracker is shown as,

x̂∗bk = E [xk|zk+1, zk+2, . . . , zk+q] . (2.77)

Please note that the backward tracker uses the prior estimate at k to avoid
assimilating zk twice during the smoothing process. The error covariance matrix
of x̂∗bk is given by
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P∗bk = E
[
(xk − x̂∗bk) (xk − x̂∗bk)

T
]
. (2.78)

Finally, the forward and backward filter results are fused using the covariance
intersection method [20] as,

x̂ (k| (k + q)) = P (k| (k + q))
[
P−1
k x̂k + P∗−1

bk x̂∗bk
]
, (2.79)

where

P (k| (k + q)) =
[
P−1
k + P∗−1

bk

]−1
. (2.80)

The smoothed estimate x̂ (k| (k + q)) uses all measurements from the first to the

(k + q)
th

time step,

x̂ (k| (k + q)) = E [xk|z1, z2, . . . , zk+q] , (2.81)

where k and q measurements are factored in by the forward and backward trackers
respectively. The fixed-lag smoother processes q+ 1 frames in each time step: (1) the
current frame is processed by the forward tracker, which has already processed the
measurements from the first to the current frame, and (2) q future frames are processed
by the backward tracker. The estimation process lags for q frames with respect to the
most recently acquired frame due to the backward tracking process. Please see Figure
2.8 for the illustration of the method for the endocardial mesh tracking.

41



2.5. Kalman Filter Based Tracking

Figure 2.8: The system state x represents the endocardial model shape and position.
(1) The forward tracker computes the posterior estimate (red) for time step k, (2)
the backward tracker computes the prior estimate (green) for time step k using q
measurements, (3) smoothed estimate (blue) is found using the covariance intersection
method.
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Chapter 3

Graph-Cut Based Edge
Detection for Kalman Filter
Based Left Ventricle Tracking
in 3D+T Echocardiography
Engin Dikici1, Fredrik Orderud2

1Norwegian University of Science and Technology, Trondheim, Norway
2GE Vingmed Ultrasound, Oslo, Norway

Consistent endocardial border segmentation in 3D echocardiography is a
challenging task. One of the major difficulties rises due to the fact that the
trabeculated structure of the endocardium causes the endocardial intensity
profile characteristics to change over a cardiac cycle. In this paper, we present
a hybrid edge detection approach using both max flow/min cut (MFMC) and
step criterion (STEP) edge detectors, and its integration into a Kalman filter
based left ventricle (LV) tracking framework.
We treat the endocardial edge detection problem as a graph partitioning
problem where the graph is defined by using the intensity profiles, and propose
a max flow/min cut based solution. For the end-systole, the step criterion edge
detector is a more suitable option. Accordingly, we introduce the weighted
combination of these techniques called the hybrid edge detector (Hybrid)
where the weight factor is determined by the size of the tracked endocardial
mesh.
Surface and volumetric measurement comparisons between the STEP, MFMC
and Hybrid shows that the Hybrid handles the specific problem of time-
dependent intensity profiles better than the other approaches.

3.1 Introduction

The introduction of 3D echocardiography has enabled rapid and low-cost acquisition of
volumetric images of the left ventricle (LV). Numerous techniques for segmenting these

45



3.2. Methods

images have appeared in the literature. However, accurate and consistent detection of
the endocardial border still remains a challenging task. Part of the reason for this is
that the trabeculated structure of the endocardial boundary leads to alternating edge
characteristics over a cardiac cycle.

Kalman filter-based 3D segmentation adopts a sequential prediction and update
strategy; the surface deformations are predicted by using a kinematic model, then
the prediction is updated based on the information provided by image measurements.
Normal displacement measurements, where the object border search is performed on
a set of normal lines defined on the predicted surface, are commonly preferred during
the measurement process. In an early work by Blake et al., Kalman filtering was
used for tracking B-spline models deformed in an affine shape space [1]. In their
study, the normal displacements were determined by selecting the gradient maxima
of the image intensity profiles. Later, this framework was utilized with a principal
component analysis based shape space for LV tracking in 2D ultrasound [2]. A local-
phase edge detector [3] was applied for the measurements, and improved results were
reported. More recently, a framework that uses extended Kalman filtering for tracking
subdivision surfaces in 3D image data sets was introduced by Orderud et al. [4]. In
their study, a step criterion was applied for the detection of the edges [5]. Common
in all these studies, for a given contour/mesh, the normal displacement for each edge
position is found independently from the other edge positions, which does not exploit
the relationship between the neighboring intensity profiles.

Given a shape model positioned in a close proximity of the target object border,
max flow/min-cut algorithms from the combinatorial optimization can be used for
updating the model points closer to their target locations. This may be achieved
by processing the graph consisting of the information gathered from a narrow-band
around the target object contour. In the graph-cut based active contours study [6],
the optimal object contour was located by calculating the minimal cut for a narrow-
band graph iteratively. Later, a similar approach was used for the segmentation of
elliptical objects [7]. The remainder of this paper illustrates how the max-flow /
min-cut algorithm in narrow-band graphs may be utilized for the endocardial border
detection.

3.2 Methods

3.2.1 Tracking framework

The framework is built around a deformable subdivision model parametrized by a
set of control vertices and their associated displacement direction vectors. Model
deformations are handled by a composite transform, where local shape deformations
are obtained by moving control vertices in the subdivision model together with a global
transformation that translates, rotates and scales the whole model.

A manually constructed Doo-Sabin surface is used to represent the endocardial
borders. This model consists of 20 control vertices that are allowed to move in the
surface normal direction to alter the shape. The edge detection is conducted from a
set of approximately 500 surface points, spread evenly across the endocardial surface.
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The tracking framework consists of five separate stages, namely the (1) state
prediction, (2) evaluation of tracking model, (3) edge measurements, (4) measurement
assimilation, and (5) measurement update. In this study, the stages are identical as in
[4], and therefore not covered. The endocardial edge detection performed at the edge
measurements stage is further investigated.

3.2.2 Edge detection methods

The edge detection process is performed by first extracting N intensity profiles I =
{Ii|i ∈ {1, ..., N}} , where each profile is centered around a surface point pi and oriented
in a surface normal direction ni. The total number of samples in each profile, K, and
the distance between consecutive samples are determined empirically. Ii,k is used for
referring to the intensity value of the ith intensity profile’s kth sample (Ii,K2

gives the

intensity value at pi). The function L gives the index of the most probable edge in each
intensity profile, and is described for different edge detection methods in the following
subsections.

Step criterion edge detector (STEP)

STEP assumes that the intensity profile Ii forms a transition from one intensity plateau
to another. It calculates the average intensity heights of the two plateaus for each
index value, and selects the index with the lowest model-data disagreement. The
measurement noise can be set as the inverse of the height difference between the
plateaus. For each profile, the edge index is determined as:

Li = arg min
k∈{0...K−1}

 k∑
t=0

∣∣∣∣∣∣
 1

k + 1

k∑
j=0

Ii,j

− Ii,t
∣∣∣∣∣∣

+
K−1∑
t=k+1

∣∣∣∣∣∣
 1

K − k − 1

K∑
j=k+1

Ii,j

− Ii,t
∣∣∣∣∣∣
 . (3.1)

Max flow / min cut edge detector (MFMC)

Max flow/min cut algorithms from combinatorial optimization can be used for finding
the global optima of a set of important energy functions [8]. A very common energy
function that is addressed by Greig et al. can be expressed as:

E(f) =
∑
v∈V

Dv(fv) +
∑

(v,y)∈Edges

Qv,y(fv, fy). (3.2)

The optimization process seeks a labeling function f that assigns binary values to
the nodes that are defined under a set V , distinguishing the inside of the LV cavity
(f = 1) from the outside (f = 0). The classification is constrained by data penalty Dv,
and interaction potential Qv,y functions. In this setting, (1) Dv penalizes the labeling
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Figure 3.1: Left: The graph nodes are shown with red, and the n-links with gray.
Right: (A closer look at the graph) the graph nodes are shown with red, the nodes
having t-links with the source are shown in red boxes, the nodes having t-links with
the sink are shown in ellipsoids, the inter-profile n-links are shown with gray, and the
in-profile n-links with white.

of v based on the predefined likelihood function, and (2) Qv,y penalizes the labeling
discontinues between the neighboring nodes v and y.

The problem of finding the optimal edges for a set of intensity profiles is formulated
as in eqn-5.11 by the MFMC method. Initially, a graph with nodes corresponding
to the each profile sample is created. Two additional terminal nodes, the source
and the sink, corresponding to the inside and the outside of the endocardium are
appended to the node-set. The source and the sink are connected by edges to the nodes
corresponding to the first and the last members of the intensity profiles respectively.
The edges connecting the terminals to the other nodes are referred as the t-links, and
they are set with infinite weights, which guarantees null data penalties in eqn-5.11.

The nodes corresponding to (1) the consecutive samples of the same profile, and
(2) the same index samples of the neighboring profiles, are connected by undirected
weighted edges called the n-links. For the first case, the weight of an n-link that
connects nodes v and y can be calculated as:

weight(v, y) = C × exp

(
− (Iv − Iy)

2

2σ2

)
, (3.3)

where Iv and Iy refers to the intensity values at the associated profile samples and C
is a constant.

For the second case, when the inter-profile connections are formed, the weight
function from eqn-5.12 is multiplied with a smoothness constant. The smoothness
constant ensures that the final cut finds the proximate edge indexes for the neighboring
profiles (see figure 1).
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ED ES ED ES

(a) MFMC (b) STEP

Figure 3.2: The reference contours are shown with yellow, and the tracker result with
red. (a) MFMC edges are fitting well to the reference at ED, there is an over-estimation
happening at ES. (b) STEP edges are fitting well to the reference at ES, there is an
under-estimation happening at ED.

After the graph is created, the maximum flow / minimum cut between the source
and the sink nodes are found by the push-relabel algorithm [9] in a polynomial

time O
(
|V |3

)
. The resulting cut defines the edge positions for all intensity profiles

simultaneously. Furthermore, the reverse of the flow is proportional with the quality
of the cut, and therefore can be utilized as the measurement noise in the Kalman filter.

Tradeoffs for the sole applications of the edge detectors

Including the trabeculae in the LV volume is a commonly accepted practice for
enhancing the reproducibility of the LV measurements [10]. At the end-diastole (ED),
the trabeculations are filled with blood, and therefore cause strong intensity changes
across the endocardial surface. STEP criteria is prone to including trabeculae with
the myocardium, since it processes each intensity profile independently. MFMC, on
the other hand, is observed to behave better in this scenario, since the smoothness
criteria constrained by the inter-profile n-links leads to more consistent edge indexes.
The trabeculations are thus included with the cavity (see figure 2).

At the end-systole (ES), the edge detection problem attains a different form. Due
to the compression and folding, the trabeculae appears as a part of the myocardium,
making the intensity profiles more continuous. The inter-profile n-links that previously
was an advantage for MFMC at ED then turns into a burden. The smoother profiles
eliminate the need for them, and they limit the agility of the model when it is most
needed. On the other hand, STEP performs well at ES (see figure 2).

Hybrid edge detector

The weighted average of MFMC and STEP edge indexes, a hybrid edge index, is
computed for each intensity profile during the cardiac cycle. The weight factor is
determined by the size of the endocardial mesh. As the mesh size converges to
its maxima, the relative weight for the MFMC increases, and as it converges to its
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Surface ED [mm] ES [mm]

STEP 3.06± 2.03 3.10± 2.21

MFMC 2.62± 1.74 3.70± 2.24

Hybrid 2.50± 1.49 3.02± 1.88

Table 3.1: Bland-Altman analysis of the surface measurements: mean error±1.96SD.

Volumetric EDV [%] ESV [%] EF [%]

STEP −11.4± 9.0 2.5± 35.2 −6.2± 14.0

MFMC 2.9± 21.0 23.0± 49.1 −8.3± 11.7

Hybrid −2.8± 13.9 6.7± 36.8 −3.8± 11.5

Table 3.2: Bland-Altman analysis of the volumetric measurements: mean
error±1.96SD.

minima, the relative weight for the STEP increases. For each profile, the edge index
is determined by finding

Lhybridi = βLMFMC
i + (1− β)LSTEPi , (3.4)

where β = (meshsize(t)−meshsize(ES))/(meshsize(ED)−meshsize(ES)).

3.3 Results

A set of 10 apical 3D echocardiography recordings, which includes 3 normal cases and
7 cases from patients with heart diseases, was used for the evaluation. The recordings
were acquired using a Vivid 7 ultrasound scanner (GE Vingmed Ultrasound, Norway)
using a matrix array transducer. The STEP, MFMC and Hybrid edge detectors
were each used in connection to the existing contour tracking framework. Tracked
3D meshes were extracted after running the tracker through 3 cardiac cycles for a
convergence. The accuracy of the edge detectors were evaluated by comparing the
extracted meshes against verified reference meshes by a medical expert using a semi-
automatic segmentation tool (4D AutoLVQ, GE Vingmed Ultrasound, Norway).

A Doo-Sabin endocardial model controlled by 20 control points was used in the
tracking framework. The edge measurements were performed on 528 intensity profiles
evenly distributed around the endocardial model. Each profile consisted of 30 samples
spaced 1mm apart. For the STEP, the normal displacement measurements that were
significantly different from their neighbors were discarded as outliers.

In table 1, a Bland-Altman analysis for the surface error measurements is provided.
The distribution of the average distance between the tracked and the reference surface
points for each edge detector is given. In figure 3, color coded surface error maps are
represented for a sample case. In table 2, LV cavity volume errors for ED and ES, and
the ejection fraction (EF) errors, all in percentages, are reported.
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Figure 3.3: The signed surface errors are represented by using a color coding: 4mm
over-estimation is red, 4mm under-estimation is blue, 0mm no-error is light green. ED
phase signed errors (the upper row), and ES phase signed errors (the lower row) are
shown for a case.

The tracking framework is implemented in C++, and processed each frame in
7.5ms with STEP, 78ms with MFMC, and 80ms with Hybrid when executed on a 2.80
GHz Intel Core 2 Duo CPU.

3.4 Discussion and conclusions

In this paper, a graph-cut based edge detection approach MFMC, a hybrid approach
combining MFMC and STEP, and their integration into a Kalman filter based tracking
framework have been proposed.

Comparative evaluation of the STEP, MFMC and Hybrid showed that the Hybrid
leads to improved endocardial surface segmentation results, and hence volumetric
measurements. As the accuracy of EF estimation is determined by both ED and
ES surface segmentation results, there exists a significant estimation improvement
from the closest 6.2% error average produced by STEP to 3.8% using Hybrid.

The tracking framework utilizes a Doo-Sabin surface, which generates the model
points evenly distributed around a model. This is ideal for the MFMC implementation
proposed in this work. Otherwise, the design of the inter-profile n-link weights should
also factor in the varying distances between the profiles.
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Automated detection of endocardial borders in 3D echocardiography is a
challenging task. Part of the reason for this is the endocardial boundary
leads to alternating edge characteristics that vary over a cardiac cycle. The
maximum gradient (MG), step criterion (STEP) and max flow/min cut
(MFMC) edge detectors have been previously applied for the endocardial edge
detection problem. In this paper, a local polynomial regression based method
(LPR) is introduced for filtering the STEP results. For each endocardial
model point, (1) the surface is parametrized locally around the point, (2) a
polynomial regression is applied on the STEP edges in the parametric domain,
and (3) the fitted polynomial is evaluated at the origin of the parametric
domain to determine the endocardial edge position. The effectiveness of the
introduced method is validated via comparative analyses among the MFMC,
STEP, and first & second degree LPR methods.

4.1 Introduction

3D echocardiography has enabled real-time, non-invasive and low cost acquisition of
volumetric images of the LV. The problem of automatic detection and tracking of
heart chambers in ultrasound images has received considerable attention lately [1, 2].
However, the accurate detection of the endocardial borders remains a challenging task.
This is partially due to the trabeculated structure of the endocardial borders, which
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leads to alternating edge characteristics over a cardiac cycle. Furthermore, the real-
time imaging capability of 3D ultrasound requires highly time-efficient algorithms.

One approach for the LV detection is to use a Kalman filter based tracking
framework to update a deformable model based on the edge measurements. In an early
work by Blake et al., Kalman filtering was used for tracking B-spline models deformed
in an affine shape space [3]. In their study, object boundaries were determined by
selecting the gradient maxima (MG) of image intensity profiles. Later, this framework
was utilized with a principal component analysis based shape space for the LV tracking
in 2D ultrasound by Jacob et al.[4, 5]. This study employed a local-phase edge detector
[6] for the edge measurements, and reported visually enhanced results compared to
the maximum gradient method. Orderud et al. utilized an extended Kalman filter
to track deformable subdivision surfaces in 3D image data sets [2]. The latter work
used a step criterion (STEP) [7] for the detection of endocardial edges. More recently,
Dikici et al. applied the max flow / min cut algorithm (MFMC) for the detection of
endocardial edges in a Kalman tracking framework [8].

Local polynomial regression is a simple and effective method for nonparametric
regression. It has been applied for many tasks including the multivariate prediction
[9], image filtering [10] and image reconstruction [11]. In this paper, we introduce a
novel local polynomial regression based edge filtering approach (LPR) for smoothing
the STEP results in a parametric domain. First, the STEP edges are calculated at
evenly distributed positions around an endocardial model. Then, the detected STEP
edges are filtered by a local polynomial regression using a kernel weighting scheme.
The major motivation for this work is to improve the edge detection quality offered
by STEP method while still providing a real-time solution. The effectiveness of the
introduced method is validated via comparative analyses among the MFMC, STEP,
and first & second degree LPR methods.

4.2 Tracking Framework

The tracking framework is built around a deformable subdivision model parametrized
by a set of control vertices with associated displacement direction vectors. Shape
and pose deformations are handled by a composite transform T = Tg(Tl(xl), xg),
where local shape deformations Tl(xl) are obtained by moving control vertices in the
subdivision model together with a global transformation Tg(pl, xg) that translates,
rotates and scales the whole model. This leads to a composite state vector x, consisting
of Ng global and Nl local parameters.

A manually constructed Doo-Sabin surface is used as a template for representing
the endocardial borders. The control vertices are allowed to move in the surface
normal direction to alter the shape. The edge detection is conducted from a set of
evenly distributed endocardial surface points.

The tracking framework consists of five separate stages, which will be described
briefly in the following subsections (please refer to [2] for further details).
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4.2.1 State Prediction

A motion model for predicting the state vector x at time time k + 1 is formulated as:

xk+1 − x0 = A1(x̂k − x0) +A2(x̂k−1 − x0), (4.1)

where x̂k is the estimated state from time-step k, and x0 is the initial state.
Temporal properties like damping and regularization towards x0 can be adjusted using
coefficients in the matrices A1 and A2. Prediction uncertainty can similarly be changed
by manipulating the process noise covariance matrix used in the associated covariance
update equation.

4.2.2 Evaluation of Tracking Model

A set of surface points p with associated normal vectors n are calculated from the
predicted state. Then, the state-space Jacobi matrices relating surface point position
changes to state changes are found. The composite deformation model leads to Jacobi
matrices including both the global and local derivatives:

Jg =
[
∂Tg(pl,xg)

∂xg
,
∂Tg(pl,xg)

∂pl
Jl

]
. (4.2)

4.2.3 Edge Measurements

The predicted model is guided towards the target object using edge measurements.
Edge detection is conducted in the surface normal direction ni from each point pi on
the predicted surface (different methods for this part are elaborated in Section-3). The
end result is a normal displacement value vi that gives the signed distance between
the detected edge pobs,i and the surface point:

vi = nTi (pobs,i − pi). (4.3)

Each normal displacement measurement is coupled with a measurement noise ri
that specifies the spatial uncertainty of the detected edge. Associated measurement
vectors hi for each edge are computed by taking the normal vector projection of the
state-space Jacobi matrices:

hTi = nTi J. (4.4)

4.2.4 Measurement Assimilation

All measurement results are assimilated in an information space with the assumption
of uncorrelated measurements. This allows for efficient weighted summation of all
measurement results into information vector and matrix with dimensions invariant to
the number of measurements:

HTR−1v =
∑
i hir

−1
i vi, (4.5)

HTR−1H =
∑
i hir

−1
i hTi . (4.6)
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4.2.5 Measurement Update

The measurement information is combined with the predicted state to compute an
updated state estimate. By using the information filter formulation of the Kalman
filter, the updated state estimate x̂ for a time step k becomes:

x̂k = x̄k + P̂kH
TR−1vk, (4.7)

where an updated error covariance matrix P̂k can also be calculated in the information
space to avoid inverting large matrices:

P̂k
−1

= P̄−1
k +HTR−1H. (4.8)

4.3 Edge Detection

The edge detection process is performed by first extracting N intensity profiles
(I1, I2 · · · IN ) centered around the surface points pi and oriented in the surface normal
directions ni. The total number of samples in each profile, M , and the distance
between consecutive samples are determined empirically. Ii,m is used for referring to
the intensity value of the ith intensity profile’s mth sample. The function L gives the
index of the most probable edge in each intensity profile, and is described for the
STEP and LPR methods in the following subsections.

4.3.1 Step Criterion Edge Detector (STEP)

STEP assumes that the intensity profile Ii forms a transition from one intensity plateau
to another. It calculates the heights of the two plateaus for each index value, and
selects the index with the lowest sum of squared differences between the criteria and
the image data. For each profile, the edge index is determined as:

Li = argminm

m∑
t=1

((
1

m

m∑
j=1

Ii,j

)
− Ii,t

)2

+

M∑
t=m+1

((
1

M −m

M∑
j=m+1

Ii,j

)
− Ii,t

)2

. (4.9)

If the plateau heights for the determined edge index are similar (Li = m and
1
m

∑m
j=1 Ii,j = 1

M−m
∑M
j=m+1 Ii,j), then the edge index is reset to the profile center

by Li = M
2 . The measurement noise is defined inversely proportional with the height

difference between the plateaus.

4.3.2 Local Polynomial Regression Edge Detector (LPR)

STEP method processes each intensity profile independently, which may cause
discontinuous edge measurement over an endocardial model. The discontinuity
problem can be resolved by filtering the measurements via local polynomial regression.
For applying a local polynomial regression, (1) the local neighborhood for each
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Figure 4.1: (Left) An intensity profile and its local neighborhood borders are shown,

(middle) the local coordinate system for the selected intensity profile is represented, (right)

Epanechnikov quadratic kernel weights are shown.

intensity profile, (2) a weighting function or a kernel, and (3) the model degree are
needed to be defined.

The distance between the intensity profiles Ii and Ij is defined as the Cartesian
distance between their intensity profile centers by Γi,j = |pi − pj | . The local
neighborhood of the ith intensity profile is called Ki, and it includes Ij iff Γi,j < λ:

kernel radius. For a notational simplicity, Ki,j , K
(p)
i,j , and K

(l)
i,j are used for referring

to the ith neighborhood’s jth member (Ki,j), the member’s intensity profile center

(K
(p)
i,j ), and the member’s measured STEP edge position (K

(l)
i,j ) respectively.

The local coordinate system for Ki can be defined as,

ei =

{
[1, 0, 0]

T
if ni 6= [1, 0, 0]

T

[0, 1, 0]
T

else.
(4.10)

~V1 = ni, V2 = ~V1 × ei, ~V3 = ~V1 × ~V2. (4.11)

Each member of Ki can be parametrized using ξ and η parameters that can be found
by,

K
(ξ)
i,j =

(
K

(p)
i,j − pi

)
· ~V2, (4.12)

K
(η)
i,j =

(
K

(p)
i,j − pi

)
· ~V3, (4.13)

where K
(ξ)
i,j and K

(η)
i,j refer to ξ and η parameters of the ith neighborhood’s jth member

respectively.
The STEP edges can be averaged locally for generating smoother results using

L̂i = Ave
(
K

(l)
i,j |j ∈ {1, 2 . . . |Ki|}

)
. However, this method might still lead to abrupt

discontinuities due to constant weight function. Rather than giving all the points
equal weights, we can assign weights that die off smoothly with the distance from the
neighborhood center [12]. Nadaraya–Watson kernel-weighted average,
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L̂i =

∑|Ki|
j=1 wλ

(
pi, K

(p)
i,j

)
K

(l)
i,j∑|Ki|

j=1 wλ

(
pi, K

(p)
i,j

) , (4.14)

with the Epanechnikov quadratic kernel,

wλ (p, q) = 0.75

(
1−

(
|p− q|
λ

)2
)
, (4.15)

can be used for this weighted filtering task (see Figure 4.1). It can be shown that
the Nadara-Watson method solves a weighted least squares problem at each intensity
profile by,

minβ0

|Ki|∑
j=1

wλ

(
pi, K

(p)
i,j

) [
K

(l)
i,j − β0

]2
, (4.16)

where the estimate is L̂i = β0. Since β0 is a 0th degree polynomial, the introduced
regression is a 0th degree local polynomial regression. This filter might produce high
estimation bias due to the fact that a local polynomial regression of degree D only has
the bias terms of degree (D + 1) and higher (see Appendix). Therefore, a higher degree
polynomial regression model should lead to a lower estimation bias, while producing
higher estimation variance and computational cost. Accordingly, the model degree
should be set considering this tradeoff.

Dth degree local polynomial regression plane defined in the parametric coordinates
(ξ, η) solves,

minβ0...βM
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(4.17)
The regression plane needs to be evaluated at the parametric domain’s center (ξ =
0, η = 0) to determine the filtered edge position. This calculation can be performed

using a matrix notation as L̂ = b (0, 0)
(
BTWB

)−1
BTWy, where

b (ξ, η) =
[
1, ξ, η, ξ2, η2, ξη . . . ηD

]
, (4.18)
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, b
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. . . b
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, (4.19)

y =
[
K

(l)
i,1 , K

(l)
i,2 . . .K

(l)
i,|Ki|

]T
, (4.20)

and W is a |Ki| × |Ki| diagonal matrix with jth diagonal element wλ

(
pi, K

(p)
i,j

)
. In

Figure 4.2, 0th, 1st and 2nd degree regression planes are represented for a given STEP
data.
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Figure 4.2: (Left) 0th degree, (middle) 1st degree - linear, (right) 2nd degree - quadratic
planes are fit on the STEP results in the parametric domain.

Cycle-1 Cycle-2 Cycle-3 Cycle-4 Cycle-5

STEP 7.15− 2.44 2.90− 2.18 2.95− 2.19 2.94 − 2.20 2.97− 2.20
MFMC 5.27− 2.48 2.43− 2.46 2.43− 2.47 2.38 − 2.46 2.42− 2.45
LPR-1 6.87− 2.29 2.70− 2.16 2.61− 2.17 2.61 − 2.16 2.60− 2.18
LPR-2 6.86− 2.30 2.62− 2.08 2.56− 2.11 2.57 − 2.07 2.58− 2.08

Table 4.1: Mean surface error (in mm) for the ED and ES frames for the first 5 cardiac cycles

[ED error - ES error]. The tracker converged after the first cycle; surface error measurements

deviated in small amounts in the following cycles.

4.4 Results

A set of 17 apical 3D echocardiography recordings, which includes 10 normal cases and
7 cases from patients with heart diseases, was used for the evaluation. The recordings
were acquired using a Vivid 7 ultrasound scanner (GE Vingmed Ultrasound, Norway)
and a matrix array transducer. Local polynomial regression based edge filtering
method was implemented for the 1st (LPR-1) and 2nd degree (LPR-2) polynomials
both with 1cm kernel radius (λ). MFMC (as introduced in [8]), STEP, LPR-1 and
LPR-2 methods were each employed in connection to the existing Kalman tracking
framework. 3D meshes were extracted after running the tracker through 3 cardiac
cycles for a convergence (see Table 4.1 for the surface error convergences). The
accuracy of the edge detectors were evaluated by comparing the extracted meshes
against the verified reference meshes drawn by a medical expert using a semi-automatic
segmentation tool (4D AutoLVQ, GE Vingmed Ultrasound, Norway).

A handcrafted Doo-Sabin endocardial model consisting of 20 control points was
used as the LV model. Edge measurements were performed in 528 intensity profiles
evenly distributed across the endocardial model. Each profile consisted of 30 samples,
spaced 1 mm apart.

Table 4.2 shows Bland-Altman analyses for the LV surface, LV cavity volume, and
the associated ejection fraction (EF) agreement. The color coded surface error maps
of a sample case are represented in Figure 4.3 rows (A) and (C).

The tracking framework is implemented in C++, and processed each frame in
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ED [mm] ES [mm] EDV [%] ESV [%] EF [%]

STEP 2.94 ± 1.56 2.20 ± 1.39 −23.01 ± 16.05 −13.03 ± 24.48 −6.05 ± 10.09

MFMC 2.38 ± 1.43 2.46 ± 1.51 −7.44 ± 24.53 12.76 ± 42.92 −8.14 ± 10.50

LPR-1 2.61 ± 1.92 2.16 ± 1.47 −19.28 ± 17.98 −10.54 ± 24.42 −4.98 ± 9.76

LPR-2 2.57 ± 1.95 2.07 ± 1.52 −18.02 ± 19.02 −9.03 ± 24.01 −5.02 ± 8.67

Table 4.2: Columns 1-2: Mean surface error±1.96SD for the ED and ES frames. Columns

3-4: Mean LV cavity volume error±1.96SD for the ED and ES frames. Column 5: Mean EF

error±1.96SD.

Figure 4.3: For a sample case, the signed surface errors for the (A) ED phase of the
original model, (B) ED phase of the refined model, (C) ES phase of the original model,
and (D) ES phase of the refined model. The original and refined models consist of 20
and 84 control points respectively. (The original model was used for the surface and
volumetric analyses provided in this paper).
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7.5ms with STEP, 78ms with MFMC, 23.7ms with LPR-1, and 40.8ms with LPR-2
when executed on a 2.80 GHz Intel Core 2 Duo CPU.

4.5 Discussion and Conclusion

We have introduced a local polynomial regression based filtering for the STEP edges.
The proposed approach was implemented for the first and second degree polynomial
regression models. The method description is provided in a degree-independent
fashion; hence the generalization of the method for higher degrees should be an
intuitive task. Increasing the degree of regression model lowers the bias component of
the mean square error (MSE), while increasing the variance component. Therefore, a
proper degree should be selected by considering the bias-variance tradeoff. In a future
study, optimal kernel radius and the regression order can be learned from a training
data statistically.

A comparative evaluation between the edge detectors showed that both LPR-1
and LPR-2 lead to improved surface and volumetric measurement accuracies over
the STEP method. For the ED phase, STEP, LPR-1 and LPR-2 produced 2.94mm,
2.61mm (12% improvement) and 2.57mm (13% improvement) mean surface errors.
LPR-1 and LPR-2 filters also reduced the LV cavity volume error of the STEP method
at the ED phase by 3.73% and 5% respectively. Comparable surface and volumetric
measurement improvements were reported for the ES phase (see Table 4.2).

The control point resolution of the endocardial model is another smoothing factor
for the Kalman tracking framework. A higher resolution endocardial model, generated
by refining the original model via Doo-Sabin subdivision rules [13], can represent a
wider range of deformations. Hence, the effects of edge filtering becomes visually more
assessable for the refined model (see Figure 4.3 rows (B) and (D)). Multiresolution
Doo-Sabin surface models with the measurement filtering might also be investigated
in a future study.

Appendix: Local Polynomial Regression Bias

Dth degree local polynomial regression curve for 1D data defined at x0 as,

f̂ (x0) =
[
1, x0 . . . x

D
0

] (
BTWB

)−1
BTWy =

N∑
i=1

li (x0) yi (4.21)

E
[
f̂ (x0)

]
= f (x0)

N∑
i=1

li (x0) + f
′
(x0)

N∑
i=1

(xi − x0) li (x0) · · · (4.22)

Lemma 1:
∑N
i=1 li (x0) = 1.

Proof: Assume that all yi = 1. Since li∈{1,2...N} (x0) do not depend on yi, f̂ (x0) =∑N
i=1 li (x0) yi =

∑N
i=1 li (x0) = 1.
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Lemma 2: Define bj (x0) =
∑N
i=1 (xi − x0)

j
li (x0). Then, bj (x0) = 0 for all

j ∈ {1, 2 . . . D}.
Proof: Assume that yi = (xi − x0)

D
. LPR solves

minβ

(
D∑
m=0

Cmx
m
i (−x0)

D−m −
D∑
m=0

βm (x0)xmi

)2

. (4.23)

where βm (x0) = Cm (−x0)
D−m

minimizes the term. Therefore,

f̂ (x0) =

N∑
i=1

(xi − x0)
j
li (x0) =

D∑
m=0

Cm (−x0)
D−m

xm0 = (x0 − x0)
D

= 0. (4.24)

Due to Lemma-1 and Lemma-2, a local polynomial regression of degree D only has
the bias terms of degree (D + 1) and higher.

Acknowledgment. The authors would like to thank Brage Amundsen at
the Norwegian University of Science and Technology for providing the 3D
echocardiography data sets.

64



References

[1] L. Yang, B. Georgescu, Y. Zheng, P. Meer, and D. Comaniciu, “3d ultrasound
tracking of the left ventricles using one-step forward prediction and data fusion
of collaborative trackers,” in Proceedings of IEEE Conf. Computer Vision and
Pattern Recognition, 2008.

[2] F. Orderud and S. I. Rabben, “Real-time 3d segmentation of the left ventricle
using deformable subdivision surfaces,” in Proceedings of IEEE Conf. Computer
Vision and Pattern Recognition, 2008.

[3] A. Blake and M. Isard, Active Contours: The Application of Techniques from
Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in
Motion. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1998.

[4] G. Jacob, J. A. Noble, M. Mulet-Parada, and A. Blake, “Evaluating a robust
contour tracker on echocardiographic sequences,” Medical Image Analysis, vol. 3,
no. 1, pp. 63 – 75, 1999.

[5] G. Jacob, J. A. Noble, A. D. Kelion, and A. P. Banning, “Quantitative regional
analysis of myocardial wall motion,” Ultrasound in Medicine & Biology, vol. 27,
no. 6, pp. 773 – 784, 2001.

[6] S. Venkatesh and R. A. Owens, “On the classification of image features,” Pattern
Recognition Letters, vol. 11, no. 5, pp. 339–349, 1990.

[7] S. I. Rabben, A. H. Torp, A. Støylen, S. Slørdahl, K. Bjørnstad, B. O. Haugen, and
B. Angelsen, “Semiautomatic contour detection in ultrasound m-mode images,”
Ultrasound in Medicine & Biology, vol. 26, no. 2, pp. 287 – 296, 2000.

[8] E. Dikici and F. Orderud, “Graph-cut based edge detection for kalman filter based
left ventricle tracking in 3d+ t echocardiography,” in Proceedings of Computing
in Cardiology, 2010.

[9] L. Su, “Prediction of multivariate chaotic time series with local polynomial
fitting,” Computers & Mathematics with Applications, vol. 59, no. 2, pp. 737
– 744, 2010.

65



References

[10] R. M. Palenichka and P. Zinterhof, “Structure-adaptive filtering based on
polynomial regression modeling of image intensity,” Journal of Electronic
Imaging, vol. 10, pp. 521–534, 2001.

[11] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing and
reconstruction,” IEEE Transactions on Image Processing, vol. 16, pp. 349–366,
feb. 2007.

[12] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer, corrected ed., Aug. 2003.

[13] D. Doo and M. Sabin, “Behaviour of recursive division surfaces near extraordinary
points,” Computer-Aided Design, vol. 10, no. 6, pp. 356 – 360, 1978.

66



Chapter 5

Best Linear Unbiased
Estimator for Kalman Filter
Based Left Ventricle Tracking
in 3D+T Echocardiography
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In this paper, we introduce the best linear unbiased estimator (BLUE) for the
detection of endocardial edges in 3D+T echocardiography recordings.
The maximum gradient (MG), step criterion (STEP) and max flow/min cut
(MFMC) edge detectors have been previously applied for the detection of the
endocardial edges. BLUE combines the responses of these 3 base estimators
using statistical inferences. First, the base estimator bias and covariance
properties are learned for each endocardial surface point at each cardiac cycle
position. Then, these statistical properties are utilized to compute an optimal
linear combination of the base detectors by BLUE.
For the validation, MG, STEP, MFMC and BLUE were each employed
in connection to a Kalman tracking framework. Comparative analyses
showed that BLUE outperform the other estimators in surface and volumetric
measurement accuracy.

5.1 Introduction

3D echocardiography is a widely used clinical diagnosis tool as it provides real-time,
non-invasive and low cost acquisition of volumetric images of the heart. Automated
segmentation and tracking of heart chambers in echocardiography images have received
considerable attention in the recent years [1–3]. However, accurate detection of
endocardial borders remains a challenging task due to reasons including (1) speckle
noise, (2) shadowing that can result in missing boundaries, and (3) the existence of

67



5.1. Introduction

intra-cavity structures such as chordae tendineae, papillary muscles and valves [4].

A Kalman filter based framework can be employed for the detection of the LV
structures in time-dependent recordings. The approach adopts a sequential prediction
and update strategy, where surface deformations are first predicted by using a
kinematic model, then the prediction is updated based on information provided by
image measurements. In an early work by Blake et al., Kalman filtering was used
for tracking B-spline models deformed in an affine shape space [5]. In their study,
object boundaries were determined by selecting the gradient maxima (MG) of image
intensity profiles. Later, this framework was utilized with a principal component
analysis based shape space for the LV tracking in 2D ultrasound by Jacob et al.
[6, 7]. Their study employed a local-phase edge detector [8] for the edge measurements,
and reported visually enhanced results compared to the maximum gradient method.
Orderud et al. utilized an extended Kalman filter to track deformable subdivision
surfaces in 3D recordings [9]. The latter work used a step criterion (STEP) [10] for
the detection of endocardial edges. More recently, Dikici et al. applied the max flow
/ min cut algorithm (MFMC) for the detection of endocardial edges in a Kalman
tracking framework [11]. Their study provided comparative analyses representing the
shortcomings of STEP and MFMC methods, and accordingly proposed a hybrid edge
detector.

Ensemble methods combine the responses of multiple base estimators/classifiers
in some principled manner to answer a query [12]. They have been shown to be
effective, since the resulting classifiers are often more accurate than the individual
classifiers making up the ensemble [13]. Konishi et al. used statistical inferences to
combine responses of multiple edge detectors (e.g. intensity gradient, the Laplacian of
a Gaussian, filterbanks of oriented filter pairs) [14, 15]. In [16], the maximum likelihood
and James-Stein estimators were employed to combine multiple endocardial edge
detectors in a Kalman tracking framework. The approach had 2 major limitations: (1)
the edge detectors were assumed to be uncorrelated, and (2) the statistical properties
of the edge detectors were marginalized to the endocardial surface; the statistical
properties did not vary over the endocardial model.

In this study, we introduce the best linear unbiased estimator (BLUE) that
combines the responses of MG, STEP and MFMC detectors, which are also referred
as the base estimators. The proposed system (1) learns the statistical properties of
the base estimators for each endocardial surface point at each cardiac cycle position,
and (2) combines the base estimator responses linearly via weights inferred from the
statistical properties. It can also be shown that BLUE and the maximum likelihood
estimator (MLE) lead to identical solutions for the investigated edge detection problem
if the base estimator error distributions are assumed to be Gaussian. Hence, the results
of our study can be used for the derivation of a Bayes estimator in a future study. The
proposed method avoids the limitations of [16] by (1) factoring in the base estimator
correlations and (2) calculating the base estimator properties for each surface point
independently. The major motivation of our study is to improve the endocardial edge
detection accuracy for the Kalman filter based tracking framework described in [9].
The effectiveness of the introduced method is represented via comparative analyses
among MG, STEP, MFMC, and BLUE.
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Figure 5.1: Doo-Sabin surfaces generalize bi-quadric B-spline surfaces to arbitrary
topologies [17]. Three steps of Doo-Sabin refinements for a model (A) are shown in
(B), (C) and (D). In (E), the endocardial model used in our study (green), its control
points (red), a set of evenly distributed endocardial surface points (yellow) and the
edge detection directions (blue) are represented.

5.2 Tracking framework

The tracking framework is built around a deformable subdivision model parametrized
by a set of control vertices with associated displacement direction vectors. Shape
and pose deformations are handled by a composite transform T = Tg (Tl(xl), xg),
where local shape deformations Tl(xl) are obtained by moving control vertices in the
subdivision model together with a global transformation Tg(pl,xg) that translates,
rotates and scales the whole model. This leads to a composite state vector x =[
xTg , xTl

]T
, consisting of Ng global and Nl local parameters.

A manually constructed Doo-Sabin surface is used as a template for representing
the endocardial borders. The control vertices are allowed to move in the surface
normal direction to alter the shape. Edge detection is conducted from a set of evenly
distributed endocardial surface points (see Figure 5.1).

The tracking framework consists of five separate stages, which will be described
briefly in the following subsections (please refer to [9] for further details).

5.2.1 State prediction

A motion model for predicting the state vector x at time k + 1 is formulated as:

xk+1 − x0 = A1 (x̂k − x0) +A2 (x̂k−1 − x0) , (5.1)
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where x̂k is the estimated state from time-step k, and x0 is the initial state.
Temporal properties like damping and regularization towards x0 can be adjusted using
coefficients in the matrices A1 and A2. Prediction uncertainty can similarly be changed
by manipulating the process noise covariance matrix used in the associated covariance
update equation.

5.2.2 Evaluation of tracking model

A set of surface points p with associated normal vectors n are calculated from the
predicted state. Then, state-space Jacobi matrices that relate surface point position
changes to state changes are computed as follows. The composite deformation model
leads to Jacobi matrices including both the global and local derivatives:

Jg =
[
∂Tg(pl,xg)

∂xg
,
∂Tg(pl,xg)

∂pl
Jl

]
. (5.2)

5.2.3 Edge measurements

The predicted model is guided towards the target object using edge measurements.
Edge detection is conducted in the surface normal direction ni from each point pi on
the predicted surface (different methods for this part are elaborated in Section-3). The
end result is a normal displacement value vi that gives the signed distance between
the detected edge pobs,i and the surface point:

vi = nTi (pobs,i − pi) . (5.3)

Each normal displacement measurement is coupled with a measurement noise ri
that specifies the spatial uncertainty of the detected edge. Associated measurement
vectors hi for each edge are computed by taking the normal vector projection of the
state-space Jacobi matrices:

hTi = nTi J. (5.4)

5.2.4 Measurement assimilation

All measurement results are assimilated in an information space with the assumption
of uncorrelated measurements. This allows for efficient weighted summation of all
measurement results into information vector and matrix with dimensions invariant to
the number of measurements:

HTR−1v =
∑
i hir

−1
i vi, (5.5)

HTR−1H =
∑
i hir

−1
i hTi . (5.6)
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5.2.5 Measurement update

The measurement information is combined with the predicted state to compute an
updated state estimate. By using the information filter formulation of the Kalman
filter, the updated state estimate x̂ for a time step k becomes:

x̂k = x̄k + P̂kH
TR−1vk, (5.7)

where an updated error covariance matrix P̂k can also be calculated in the information
space to avoid inverting large matrices:

P̂k
−1

= P̄−1
k +HTR−1H. (5.8)

5.3 Edge detection methods

The edge detection process is performed by first extracting N 1D intensity profiles
(I1, I2, . . . IN ) centered around the surface points pi and oriented in the surface normal
directions ni. The total number of samples in each profile, K, and the distance
between consecutive samples are determined empirically. Ii,k is used for referring to
the intensity value of the ith intensity profile’s kth sample. Edge detection methods,
processing intensity profiles to estimate endocardial border positions, are described in
the following subsections.

5.3.1 Maximum gradient edge detector (MG)

The intensity profile Ii is convolved with a Gaussian kernel G to create a smoother
intensity profile. Then, a gradient profile for the smoothed profile is computed
by using the forward-difference approximation. The position of the maximum of
the gradient profile is selected as the edge index. The measurement noise is set
inversely proportional with the maximum gradient. For each profile, the edge index is
determined as:

si = argmaxk

(∣∣∣[I ∗G]i,k − [I ∗G]i,k+1

∣∣∣) . (5.9)

5.3.2 Step criterion edge detector (STEP)

STEP assumes that the intensity profile Ii forms a transition from one intensity plateau
to another. It calculates the heights of the two plateaus for each index value, and
selects the index with the lowest sum of squared differences between the criteria and
the image data. For each profile, the edge index is determined as:
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si = argmink

k−1∑
t=0

1

k

k−1∑
j=0

Ii,j

− Ii,t
2

+

K−1∑
t=k

 1

K − k

K−1∑
j=k

Ii,j

− Ii,t
2

. (5.10)

If the plateau heights for the determined edge index are similar (si = m and
1
m

∑m
j=1 Ii,j = 1

M−m
∑M
j=m+1 Ii,j), then the edge index is reset to the profile center

by si = M
2 . The measurement noise is defined inversely proportional with the height

difference between the plateaus.

5.3.3 Max flow/min cut edge detector (MFMC)

The max flow/min cut algorithm can be used for finding the global optima of a set of
energy functions including [18],

E(f) =
∑
v∈V Dv(fv) +

∑
(v,y)∈EdgesQv,y(fv, fy). (5.11)

The optimization process seeks a labeling function f that assigns binary values
to the nodes that are defined under a set V , distinguishing inside of the LV cavity
(f = 1) from the outside (f = 0). The classification is constrained by data penalty
Dv, and interaction potential Qv,y functions. Dv penalizes the labeling of v based on
the predefined likelihood function, whereas Qv,y penalizes the labeling discontinues
between the neighboring nodes v and y.

The problem of finding the optimal edges is formulated as Equation 5.11 in MFMC
edge detector [11]. Initially, a graph with nodes representing the profile samples is
created. The source and sink terminal nodes are appended to the node-set, and
connected with the nodes corresponding to the first and the last samples of the intensity
profiles respectively. These connections are called the t-links and have infinite weights.
The nodes corresponding to (1) the consecutive samples of the same profile, and (2)
the same index samples of the neighboring profiles, are connected by undirected edges
called the n-links. The weight of an n-link connecting the nodes v and y is calculated
as:

weight(v, y) = C × exp
(
−(Iv−Iy)2

2σ2

)
, (5.12)

where Iv and Iy refers to the intensity values at the associated profile samples and C
is a constant. After the graph is created, the maximum flow / minimum cut between
the source and sink nodes are found using the push-relabel algorithm. The resulting
cut defines the edge positions for all intensity profiles simultaneously. The reverse of
the flow amount is utilized as the measurement noise in the Kalman filter.
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5.3.4 Best linear unbiased edge estimator (BLUE)

The estimation accuracies of MG, STEP and MFMC vary depending on both (1) the
endocardial surface position (spatial dependency), and (2) the cardiac cycle position
(temporal dependency). As an example, MFMC might be the most successful method
for the apical inferior region, while performing poor for the mid inferior region at ED.
On the other hand, STEP might out perform the other methods for both the apical
inferior and mid inferior regions at ES. The responses of multiple edge detectors can
be combined using a statistical learning approach for generating better edge estimates;
the confidences of the detectors for a given spatial and temporal position determine
their weights.

For a given edge detector, estimated edge indices for a model can be represented
as,

sζ = [s1,ζ , s2,ζ , . . . sN,ζ ] , (5.13)

where si,ζ is the estimated edge index for the ith intensity profile, and ζ ∈
[0 : ES, 1 : ED] gives the cardiac cycle position. Using a similar notation, the correct
edge indices for the model can be defined by,

θζ = [θ1,ζ , θ2,ζ , . . . θN,ζ ] . (5.14)

Please note that θζ is an unknown vector variable that needs to be estimated. The
error bias for the ith intensity profile at time ζ can be learned from a training dataset
of size B using,

Biasi,ζ = E [si,ζ − θi,ζ ] ∼=
1

B

B∑
b=1

(
s

(b)
i,ζ − θ

(b)
i,ζ

)
. (5.15)

For a given edge detector, the learned bias for the cardiac cycle position ζ can be
written in a vector form as:

Biasζ = [Bias1,ζ , Bias2,ζ , . . . BiasN,ζ ] . (5.16)

The bias eliminated edge detector would estimate the edge indeces by s̃ζ = sζ −Biasζ .
The bias eliminated estimates of MG, STEP and MFMC methods for the ith intensity
profile at ζ are given by,

yi,ζ =
[
s̃MG
i,ζ , s̃STEPi,ζ , s̃MFMC

i,ζ

]T
. (5.17)

The probability distribution function (PDF) p (yi,ζ ; θi,ζ) depends on the unknown
parameter θi,ζ . BLUE restricts the estimator to be linear in the data as,

θ̂i,ζ =

3∑
n=1

anyi,ζ [n] = aTyi,ζ , (5.18)

where the constant an values are yet to be determined. One may consider an’s as the
weights of the unbiased base estimators: a1, a2, a3 give the weights of MG, STEP and
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MFMC estimates for the ith intensity profile at time ζ. Depending on the selected
an values, a large number of different estimators for θi,ζ can be generated. However,
BLUE is defined as the one with the no bias and minimum variance. As the class of
estimators are restricted to be linear, BLUE will be optimal only when the minimum
variance unbiased (MVU) estimator is linear.

The unbiased constrain of BLUE requires that,

E
[
θ̂i,ζ

]
=

3∑
n=1

anE [yi,ζ [n]] = θi,ζ . (5.19)

In order the satisfy this constraint, E [yi,ζ [n]] must be linear in θi,ζ :

E [yi,ζ [n]] = h [n] θi,ζ . (5.20)

yi,ζ [n] can also be written as,

yi,ζ [n] = E [yi,ζ [n]] + (yi,ζ [n]− E [yi,ζ [n]]) (5.21)

= h [n] θi,ζ + w [n] , (5.22)

where w [n] is the error term, and h [n] = 1 as the bias eliminated estimators are
employed in Equation 5.18. Equation 5.19 can be further expanded as,

3∑
n=1

anE [yi,ζ [n]] =

3∑
n=1

anh [n] · θi,ζ = θi,ζ , (5.23)

showing that,

3∑
n=1

anh [n] = 1 or aT1 = 1, (5.24)

where 1 = [1, 1, 1]
T

. Equation 5.24 shows that the sum of the base estimator weights

should be 1. The variance of the θ̂i,ζ can be computed as,

var
(
θ̂i,ζ

)
= E

[(
aTyi,ζ − aTE [yi,ζ ]

)2]
,

= E
[(

aT (yi,ζ − E [yi,ζ ])
)2]

= aTCi,ζa. (5.25)

Due to the eliminated bias terms, (1) E [yi,ζ ] = θi,ζ1, and (2) Ci,ζ is a 3×3 symmetric
matrix holding the error covariances between the base detectors (e.g. Ci,ζ (1, 1) holds
the error variance of MG detector’s edge estimations, and Ci,ζ (2, 3) holds the error
covariance between STEP and MFMC detectors’ edge estimations for the ith intensity
profile at ζ). Like the bias terms, error covariances can also be learned from a training
dataset.

BLUE minimizes var
(
θ̂i,ζ

)
= aTCi,ζa subject to the unbiased constraint aT1 = 1.

The optimal aopt vector is found as (see [19] for the derivation),
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aopt =
C−1i,ζ 1

1TC−1i,ζ 1
. (5.26)

Therefore, BLUE for θ̂i,ζ is,

θ̂BLUEi,ζ =
1TC−1

i,ζ

1TC−1
i,ζ 1

yi,ζ . (5.27)

The variance of the proposed BLUE can be simply computed by,

var
(
θ̂i,ζ

)
= aT

optCi,ζaopt =
1

1TC−1
i,ζ 1

, (5.28)

where the estimator variance can be utilized as the measurement noise in the Kalman
filter.

It can also be shown that BLUE is identical to MLE for the investigated edge
detection problem if the base estimator error distributions are assumed to be Gaussian
(see Appendix A for the derivation). This is due to the facts that (1) BLUE produces
the optimal estimator for the problems with a linear model and a Gaussian noise, and
(2) MLE estimator for a linear model with a Gaussian noise is optimal. Therefore,
the results of our study can be used for the derivation of a Bayes estimator for the
endocardial edge detection in a future study.

5.4 Results

A set of 18 apical 3D echocardiography recordings were acquired using a Vivid 7
ultrasound scanner (GE Vingmed Ultrasound, Norway) and a matrix array transducer.
The endocardial border segmentation of the recordings were performed by a medical
expert using a semi-automatic segmentation tool (4D AutoLVQ, GE Vingmed
Ultrasound, Norway).

A 3-fold cross validation (CV) was applied for the validation of BLUE method.
First, the recordings were randomly divided into 3 datasets, each including 6
recordings. Then, for each of these 3 datasets:

1. The other 2 datasets were used for the training: (a) bias, (b) covariance and
(c) weight properties of the base detectors were estimated for the ED and ES
frames. Figure 5.2 shows the estimated covariances between the base detectors,
together with the corresponding detector weights from the first dataset.

2. The estimated bias and weight properties, which vary over the endocardial
surface model, were interpolated between ED and ES through the cardiac cycle
using linear interpolation. Figure 6.2 shows edge-detector weight interpolation
from ED to ES for 4 random surface points for the first dataset.
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Figure 5.2: Covariances between the base estimators and the corresponding base
estimator weights. Row (A) and (B) show covariances between the base estimators for
a dataset at ED and ES frames respectively. Row(C) shows the weights of the base
estimators with color coded images, where columns 1-3 show the weights for ED and
columns 4-6 show the weights for ES.

3. The BLUE method with the learned bias and weight properties was employed in
connection to the existing Kalman tracking framework for tracking the recordings
in the testing dataset. The error measurements including the (a) absolute surface
point error giving the average absolute distance of each predicted surface point to
ground truth surface, (b) squared surface point error giving the average squared
distance of each predicted surface point to ground truth surface, and (3) absolute
volume error giving the average of predicted surface’s absolute volume errors
were computed.

Finally, the measurements of each fold were averaged to find the final statistics
for BLUE as described in [20]. Similar error measurements were also performed for
MG, STEP and MFMC using all 18 recordings. The final results for each method are
reported in Figure 5.4.

In the Kalman tracking framework, a handcrafted Doo-Sabin endocardial model
consisting of 20 control points was used as LV model [9]. Edge measurements were
performed in 528 intensity profiles distributed evenly across the endocardial surface.
Each profile consisted of 30 samples, spaced 1 mm apart. For MG and STEP, normal
displacement measurements that were significantly different from their neighbors were
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Figure 5.3: Base estimator weights for 4 random surface points from ED to ES. Base
estimator weights vary over the endocardial surface and cardiac cycle as represented
for 4 points. For a given endocardial surface and cardiac cycle position, sum of the
weights is always 1, where the negative weights are allowed.

Figure 5.4: (A) Absolute surface point error (in mm) , (B) squared surface point error
(in mm2), and (C) absolute volume error (in percentages) for the Kalman tracking
framework using MG, STEP, MFMC and BLUE methods. Red and blue bars represent
the average error for the ED and ES frames respectively.
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discarded as outliers. The tracking framework is implemented in C++, and processed
each frame in 6.8ms with MG, 7.5ms with STEP, 78ms with MFMC and 81ms with
BLUE when executed on a 2.80 GHz Intel Core 2 Duo CPU.

5.5 Discussion and conclusion

We have introduced BLUE for the endocardial edge detection, which leads to identical
solutions as MLE under the assumption of Gaussian distributed base estimator
errors. Introduced novel approach utilizes statistical inferences depending on both the
endocardial surface and cardiac cycle positions to combine multiple edge detectors.
Comparative analyses have showed that the proposed method outperforms the MG,
STEP and MFMC methods both in surface and volumetric measurement accuracies
(see Figure 5.4).

Our study significantly differs from [16], as (1) the statistical properties of the base
estimators are defined for each endocardial surface point independently, and (2) the
base estimator covariances are utilized. The probability-variance estimator represented
in [16] estimates the endocardial edge positions as,

θ̂MrgMLE
i,ζ =

s̃MGi,ζ
σ2
ζ,(MG)

+
s̃STEPi,ζ

σ2
ζ,(STEP )

+
s̃MFMCi,ζ

σ2
ζ,(MFMC)

1
σ2
ζ,(MG)

+ 1
σ2
ζ,(STEP )

+ 1
σ2
ζ,(MFMC)

, (5.29)

where the bias and variance (σ2
ζ ) properties of the base predictors do not depend on

a cardiac surface position. Equations 5.27 and 5.29 clearly show that the θ̂MrgMLE

could be considered as the surface marginalized version of the proposed θ̂BLUEi,ζ (or

θ̂MLE
i,ζ ) only if the base estimators were not correlated. As represented in Figure 5.2,

the covariances between the base estimators get high values depending on both the
cardiac surface and cardiac cycle positions. Hence, the zero correlation assumption
in [16] would not be valid for the endocardial surface position dependent statistical
inferences utilized in this study.

The proposed approach can be further improved in the following areas:

1. The introduced method does not make any assumptions about the prior
distribution of θi,ζ , as the estimations are directly derived from p (yi,ζ ; θi,ζ).
If the prior distribution of the θi,ζ were learned from a training dataset, then the
empirical Bayes method could have been employed. On the average, empirical
Bayes estimations are always closer to θi,ζ than MLE’s [21]. The application of
the empirical Bayes method for the endocardial edge detection problem might
be investigated in a future study.

2. The proposed method calculates the base estimator bias and weight properties
at the ED and ES frames. Then, it interpolates these properties to intermediate
frames using a linear interpolation. However, these properties could be learned
at more than 2 cardiac cycle positions, and trigonometrically interpolated to all
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cardiac cycle. The trigonometric interpolation would then take advantage of the
cyclic motion of the endocardial walls.

A. Maximum likelihood edge estimator (MLE)

The system can be described for the ith intensity profile at time ζ using a general
linear model (mostly similar with the Equation 5.22) as:

si,ζ = 1θi,ζ + bi,ζ + wi,ζ , (5.30)

where θi,ζ is the unknown edge position (scalar valued), si,ζ is the measurement vector

of the edge detectors, bi,ζ =
[
BiasMG

i,ζ , BiasSTEPi,ζ , BiasMFMC
i,ζ

]T
is the learned bias

vector, and wi,ζ =
[
wMG
ij , wSTEPij , wMFMC

ij

]T
is the noise vector with a learned

Gaussian PDF N (0, Ci,ζ). The bias vector can be merged with the measurement
vector as in Equation 5.17 giving,

yi,ζ = 1θi,ζ + wi,ζ . (5.31)

Under these conditions p (yi,ζ ; θi,ζ) can be defined by,

p (yi,ζ ; θi,ζ) = K · e−
1
2 (yi,ζ−1θi,ζ)TC−1

i,ζ (yi,ζ−1θi,ζ), (5.32)

where K normalizes the PDF. MLE of θi,ζ is found by minimizing,

J (θi,ζ) = (yi,ζ − 1θi,ζ)
T
C−1
i,ζ (yi,ζ − 1θi,ζ) . (5.33)

Since (1) Equation 5.33 is a quadratic function of the elements of θi,ζ , and
(2) C−1

i,ζ is a positive definite matrix, differentiation of J (θi,ζ) produces the global
minimum. Differentiation of the natural logarithm of p (yi,ζ ; θi,ζ) gives (see [19] for
the derivation),

∂ ln p (yi,ζ ; θi,ζ)

∂θi,ζ
=
∂ (1θi,ζ)

T

∂θi,ζ
C−1
i,ζ (yi,ζ − 1θi,ζ) . (5.34)

Setting this gradient equal to zero yields,

1TC−1
i,ζ

(
yi,ζ − 1θ̂i,ζ

)
= 0 (5.35)

Solving Equation 5.35 for θ̂i,ζ produces MLE:

θ̂MLE
i,ζ =

1TC−1
i,ζ

1TC−1
i,ζ 1

yi,ζ . (5.36)

θ̂i,ζ is an unbiased estimator with the variance of var
(
θ̂i,ζ

)
=
(
1TC−1

i,ζ 1
)−1

.

As represented in Equations 5.27 and 5.36, BLUE and MLE estimators are identical
for the application defined in this paper.
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Chapter 6

Empirical Bayes Estimator for
Endocardial Edge Detection
in 3D+T Echocardiography
Engin Dikici1, Fredrik Orderud2 and Bo Henry Lindqvist1
1Norwegian University of Science and Technology, Trondheim, Norway
2GE Vingmed Ultrasound, Oslo, Norway

This paper presents an empirical Bayes (EB) estimator for detection of
endocardial edges in 3D+T echocardiography recordings. A maximum
likelihood (ML) edge detector, proposed in a previous study, combines the
responses of multiple edge detectors to improve the detection accuracy. We
aim to further extend this approach with the use of contextual priors, that
gives the probabilistic distribution of correct (yet unknown) endocardial edge
positions. For training, a ML model that gives an optimal linear combination
of multiple endocardial edge detectors is learned from a pre-segmented
dataset. For a given test data, (1) ML edges are estimated using the learned
ML model, (2) a contextual prior is derived using the ML edge estimations
in an empirical fashion, and (3) ML estimates and the contextual prior are
fused to produce empirical Bayes endocardial edge estimates. Comparative
analyses show that EB reduces the mean square endocardial surface error
with respect to ML estimations. This is due to the Stein effect that briefly
asserts that the expected mean square error of the ML estimations should be
reduced with the use of empirically-derived prior information.

6.1 Introduction

This paper considers the problem of endocardial border detection in 3D+T
echocardigraphy recordings. This is a challenging task due to problems including
(1) speckle noise, (2) shadowing that can result in missing boundaries, and (3) the
existence of intra-cavity structures such as chordae tendineae, papillary muscles and
valves [1]. Furthermore, real time, or nearly real time, detection of endocardial borders
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might be necessary during invasive procedures and intensive care.

A Kalman tracking framework can be employed for rapid and model based
detection of endocardial borders in 3D+T recordings. The approach utilizes a
sequential prediction and update strategy, where surface deformations are first
predicted by a kinematic model, followed by an update step based on information
provided by image measurements. Maximum gradient (MG) [2], step criterion (STEP)
[3], local-phase [4] and max flow/min cut (MFMC) [5] edge detectors were previously
employed for the image measurement stage of the Kalman tracking framework. In [6],
a maximum likelihood (ML) edge detector that combines the responses of multiple
base detectors (e.g. MG, STEP and MFMC) via learned statistical inferences was
introduced. The method was shown to be more accurate than the base detectors,
however it had 2 major limitations: (1) the edge detectors were assumed to be
uncorrelated, and (2) statistical properties of the edge detectors were marginalized
to the endocardial surface. More recently, the shortcomings of [6] were addressed
by an improved ML method employing both cardiac cycle and endocardial surface
position dependent statistics [7].

In this paper, we further extend the ML endocardial edge detector, proposed in [7],
by incorporating contextual priors giving the probabilistic distribution of endocardial
edges around a surface model. A pre-segmented training dataset is used for learning
a ML model, giving the optimal base detector weights for each cardiac cycle and
endocardial surface position. For testing, ML edges are first estimated using the
ML model. Next, the ML estimates are utilized to empirically compute Gaussian
contextual prior parameters. Finally, the ML estimates are combined with the
contextual prior to produce empirical Bayes (EB) estimations for the endocardial edge
positions (see Figure 6.1). The effectiveness of the introduced method is represented
via comparative analyses among MG, STEP, MFMC, ML and EB.

6.2 Methods

6.2.1 Kalman Tracking Framework

The tracking framework is built around a deformable subdivision model parametrized
by a set of control vertices with associated displacement direction vectors. Model
deformations are handled by a composite transform, where local shape deformations
are obtained by moving control vertices in the subdivision model together with a global
transformation that translates, rotates and scales the model as a whole. A manually
constructed Doo-Sabin surface is used as a template for representing the endocardial
borders, where the model control vertices are allowed to move in the surface normal
direction to alter the shape.

The tracking framework consists of five separate stages, namely (1) state
prediction, (2) evaluation of tracking model, (3) edge measurements, (4) measurement
assimilation, and (5) measurement update [8].

Endocardial edge detection methods are employed during the edge measurements
stage of the framework. The edge detection is performed by first extracting N 1D
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Figure 6.1: Overview of the proposed approach. Training stage produces a ML model.
Next, the ML model is used for finding a ML estimate that is also utilized to derive a
contextual prior. Finally, the ML estimate and the contextual model are combined to
produce an EB estimate.

intensity profiles centered around the surface points, which are spread evenly across
the endocardial surface model. The intensity profiles are oriented in the surface
normal directions. MG, STEP and MFMC edge detectors, also referred as the base
detectors, define different intensity profile processing schemes to estimate endocardial
edge positions [7]. ML and EB edge detectors, combining the responses of these base
detectors, are described in the following subsections.

6.2.2 Maximum Likelihood Edge Detector (ML)

The estimation accuracies of MG, STEP and MFMC vary depending on both
endocardial surface and cardiac cycle positions [5, 7]. As an example, MFMC might
be the most successful method for the apical inferior region, while performing poor
for the mid inferior region at end diastole (ED). On the other hand, STEP might
outperform the other methods for both the apical inferior and mid inferior regions at
end systole (ES). The responses of multiple edge detectors can be combined using a
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statistical learning approach for generating better edge estimates; the confidences of
the detectors for a given spatial and temporal position determine their weights.

The system can be described for the ith intensity profile at cardiac cycle position
ζ ∈ [0 : ES, 1 : ED] using a general linear model as:

si,ζ = 1θi,ζ + bi,ζ + wi,ζ , (6.1)

where θi,ζ is the unknown edge position (scalar valued), si,ζ is the measurement vector

of the edge detectors, bi,ζ =
[
BiasMG

i,ζ , BiasSTEPi,ζ , BiasMFMC
i,ζ

]T
is the learned bias

vector for the ith intensity profile at time ζ, and wi,ζ =
[
wMG
ij , wSTEPij , wMFMC

ij

]T
is the noise vector with a learned Gaussian probability distribution function (PDF)
N (0, Ci,ζ). Note that Ci,ζ is a 3× 3 symmetric matrix holding the error covariances
between the base detectors (e.g. Ci,ζ (1, 1) holds the error variance of MG detector’s
edge estimations, and Ci,ζ (2, 3) holds the error covariance between STEP and MFMC
detectors’ edge estimations for the ith intensity profile at ζ). The bias vector can be
merged with the measurement vector giving,

yi,ζ = 1θi,ζ + wi,ζ . (6.2)

Maximum likelihood estimator of θi,ζ can be derived as [7]:

θ̂ML
i,ζ =

1TC−1
i,ζ

1TC−1
i,ζ 1

yi,ζ . (6.3)

θ̂ML
i,ζ is an unbiased estimator with the variance of σ2

i,ζ =
(
1TC−1

i,ζ 1
)−1

. The

estimator variance can be utilized as the measurement noise in the Kalman filter. ML
endocardial edge estimations for the model at ζ are given as,

θ̂ML
i,ζ ∼ N

(
θi,ζ , σ

2
i,ζ

)
, i = 1, . . . , N. (6.4)

6.2.3 Empirical Bayes Edge Detector (EB)

θ̂ML
i,ζ is both the best linear unbiased and maximum likelihood estimator for θi,ζ , which

might seem enough to declare θ̂ML
i,ζ as an optimal detector for a given base detector set.

However, if all the base detectors are producing highly correlated and wrong results
for some parts of the endocardium, it becomes obvious that a better estimator should
benefit from an additional bias term occasionally. Empirical Bayes estimator (1) uses
a contextual prior model giving the PDF of the endocardial edge displacements, (2)
and refines the ML estimations with this prior model to produce biased estimations.
The prior model helps pulling low-confidence-inaccurate endocardial edge estimations
towards a prior distribution mean, which eventually lowers the estimation mean square
error.

Let us make the Bayesian assumption that the contextual prior has a Gaussian
PDF given as,
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θi,ζ ∼ N
(
µζ , τ

2
ζ

)
, i = 1, . . . , N. (6.5)

The Bayes estimate for θi,ζ , which is the expected value of the posterior distribution

p
(
θi,ζ | θ̂ML

1,ζ . . . θ̂ML
N,ζ

)
, is given by,

θ̂Bayesi,ζ =

(
σ2
i,ζ

σ2
i,ζ + τ2

ζ

)
µζ +

(
τ2
ζ

σ2
i,ζ + τ2

ζ

)
θ̂ML
i,ζ . (6.6)

θ̂Bayesi,ζ is the weighted average of µζ and θ̂ML
i,ζ ; the weights used in the weighted

average depend on the relative sizes of σ2
i,ζ and τ2

ζ . Hence the confidences of θ̂ML
i,ζ and

µζ determine their weights. More explicitly, the ML estimations are pulled towards a
contextual prior mean µζ with rates determined by their confidences.

The empirical Bayes approach agrees with the Bayes model, and estimates the
unknown prior distribution parameters, µζ and τ2

ζ , from the data [9]. For this

estimation task, it uses the marginal distributions of θ̂ML
i,ζ , represented as m

(
θ̂ML
i,ζ

)
.

A standard calculation shows that,

m
(
θ̂ML
i,ζ

)
∼ N

(
µζ , σ

2
i,ζ + τ2

ζ

)
, i = 1, . . . , N. (6.7)

The joint marginal distribution of all θ̂ML
i,ζ is hence given by,

m
(
θ̂ML
ζ

)
=

N∏
i=1

1√
2π
(
σ2
i,ζ + τ2

ζ

)e
−(θ̂MLi,ζ −µζ)

2

2(σ2i,ζ+τ2ζ) . (6.8)

Maximum likelihood estimators for µζ and τ2
ζ can be found by maximizing the log

of this function, solving,

∂ log
(
m
(
θ̂ML
ζ

))
∂µζ

=
∂ log

(
m
(
θ̂ML
ζ

))
∂τ2
ζ

= 0, (6.9)

to give the estimates µ̂ζ and τ̂2
ζ . Note that µ̂ζ and τ̂2

ζ are asymptotically efficient

estimations for µζ and τ2
ζ [10]. The Empirical Bayes estimate is found by placing

these estimated prior distribution parameters into Equation 6.6 by,

θ̂EBi,ζ =

(
σ2
i,ζ

σ2
i,ζ + τ̂2

ζ

)
µ̂ζ +

(
τ̂2
ζ

σ2
i,ζ + τ̂2

ζ

)
θ̂ML
i,ζ . (6.10)

θ̂EBi,ζ uses all θ̂ML
i,ζ for detecting the endocardial edges taking the advantage of

the Stein effect. The Stein effect briefly asserts that the estimation accuracy can be
improved by using the information coming from the full model. It can be shown that
for N ≥ 4,
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MG STEP MFMC ML EB

ED 15.53 11.05 8.90 7.00 6.11
ES 17.22 7.27 10.31 8.21 7.44

Table 6.1: Squared surface point errors (in mm2) for the Kalman tracking framework
using MG, STEP, MFMC, ML, EB methods for ED and ES frames.

E

[
N∑
i=1

(
θi,ζ − θ̂EBi,ζ

)2
]
< E

[
N∑
i=1

(
θi,ζ − θ̂ML

i,ζ

)2
]
, (6.11)

where the expectation is over the distribution of θ̂ML
i,ζ given θi,ζ [9]. Therefore, a lower

mean square surface error is expected for the empirical Bayes estimator compared with
the maximum likelihood estimator theoretically.

6.3 Results

18 apical 3D echocardiography recordings were acquired using a Vivid 7 ultrasound
scanner (GE Vingmed Ultrasound, Norway) and a matrix array transducer. The
endocardial border segmentation of the recordings were performed by a medical expert
using a semi-automatic segmentation tool (4D AutoLVQ, GE Vingmed Ultrasound,
Norway).

A 3-fold cross validation (CV) was applied for validation of the ML and EB edge
detectors. For each testing fold, the other 2 folds were used for learning a ML
model at the ED and ES frames. The ML model included bias, covariance and
corresponding ML weights at 528 evenly distributed endocardial surface positions.
The learned model was later interpolated between ED and ES through the cardiac
cycle using linear interpolation (see Figure 6.2). For testing, (1) ML and EB detectors
were used in connection to the Kalman tracking framework with the learned ML
model, (2) squared surface point errors (SSPE) giving the average squared distances
between the estimated and ground truth surface points were computed, and (3) SSPE
measurements of the folds were averaged to find final statistics. SSPE based evaluation
was performed, since the objective of the study is to lower the mean square estimation
error by taking advantage of the Stein effect. SSPE of STEP, MFMC and MG methods
were also computed using all 18 recordings (see Table 6.1).

In the Kalman tracking framework, a handcrafted Doo-Sabin endocardial model
consisting of 20 control points was used as LV model [8]. Edge measurements were
performed in 528 intensity profiles distributed evenly across the endocardial surface.
Each profile consisted of 30 samples, spaced 1 mm apart. The tracking framework is
implemented in C++, and processed each frame in 6.8ms with MG, 7.5ms with STEP,
78ms with MFMC, 81ms with ML and 83ms with EB when executed on a 2.80 GHz
Intel Core 2 Duo CPU.
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Figure 6.2: Base estimator and contextual prior weights for four random surface points
for the ML and EB detectors. Upper row: ML computes the optimal base detector
weights for ED and ES frames, and interpolate these to all cardiac cycle. Lower row:

EB multiples the ML weights with
(
τ̂2
ζ /
(
σ2
i,ζ + τ̂2

ζ

))
and sets the prior distribution

weight as
(
σ2
i,ζ/

(
σ2
i,ζ + τ̂2

ζ

))
(see Equation 6.10). For a given endocardial surface and

cardiac cycle position, sum of the weights is always 1.

6.4 Conclusion

We have introduced the EB approach, which finds a contextual prior capturing the
probabilistic distribution of endocardial edges around a surface model, and refines ML
estimations with this empirically estimated prior. The introduced method is (1) simple
and efficient; computation of contextual priors is an intuitive and computationally non-
expensive task, (2) yet novel as the empirical Bayes approach has not been used for
the Kalman measurements prior to our study. Results on 18 datasets demonstrate
that the use of contextual information can lower the mean square estimation error as
theoretically asserted by the Stein effect.
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Step criterion edge detector (STEP) has been employed for the detection of
endocardial edges in a Kalman filter based left ventricle tracking framework in
previous studies. STEP determines the endocardial edge positions by fitting
piecewise constant functions to intensity profiles, which are extracted on a
tracked surface’s normal directions. In this study, we generalize STEP using
higher order piecewise polynomial functions. The generalized STEP detectors
make different assumptions about the endocardial edge representations, and
their accuracies vary over the endocardial surface and cardiac cycle positions.
Accordingly, we combine the responses of the generalized detectors using
a maximum likelihood (ML) approach. Unlike previously proposed ML
approaches, our combined edge detector provides a real-time tracking solution
as the majority of regressive functions for the polynomial fitting can be
computed offline. Comparative analyses showed that the combined detector
(1) outperforms each of the generalized STEP detectors, and (2) provides a
comparable accuracy with the previously defined slower ML approach.
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7.1 Introduction

3D+T echocardiography is a valuable tool for assessing cardiac function, as it
enables real-time, non-invasive and low cost acquisition of volumetric images of the
heart. The automated analysis methods for the echocardiography recordings have
received considerable attention over the recent years [1, 2]. However, the automated
segmentation and tracking of heart chambers remain challenging tasks due to imaging
artifacts; including speckle noise, shadows and signal dropouts [3]. Furthermore,
the real-time detection of endocardial borders might be desirable for the invasive
procedures and intensive care applications.

State-space analysis using Kalman filtering can be utilized for the tracking of heart
chambers in time dependent recordings. The approach uses a sequential prediction and
update strategy, where surface deformations are first predicted by a kinematic model,
followed by an update step based on information provided by image measurements.
Maximum gradient (MG) [4], step criterion (STEP) [5], local-phase [6] and max
flow/min cut (MFMC) [7] edge detectors were previously employed for the detection
of the left ventricle’s (LV) endocardial edges in a Kalman tracking framework. In
[8], a maximum likelihood (ML) edge detector combining the responses of multiple
base detectors via learned statistical inferences was introduced. The ML detector was
shown to be more accurate than the base detectors, however it offered a slower tracking
solution due to the high computational complexity of a utilized base detector, MFMC.

The motivation for our study is to define an accurate and real-time ML endocardial
edge detector. Accordingly, we first define a new set of base detectors that generalize
STEP to higher order piecewise polynomials. The kth order STEP detector (1) fits
multiple piecewise kth order polynomial functions to a given intensity profile, which
is extracted on a tracked surface’s normal direction, then (2) selects the optimal
piecewise function in the least-squares (LS) sense. Each generalized STEP detector
makes different assumptions about the intensity distribution characteristics of the
myocardium and blood-pool; the accuracies of these detectors vary depending on the
endocardial surface and cardiac cycle positions. Accordingly, we combine the responses
of the generalized STEP detectors utilizing a space-time position dependent ML
method described in [8]. The combined detector provides a real-time tracking solution
as the majority of regressive functions for the polynomial fitting can be computed
offline. The effectiveness of the introduced method is represented via comparative
analyses among the 0th, 1st, 2nd order generalized STEP detectors, proposed ML and
previously defined ML approaches.

7.2 Tracking Framework

The tracking framework is built around a deformable subdivision model parametrized
by a set of control vertices with associated displacement direction vectors. Model
deformations are handled by a composite transform, where local shape deformations
are obtained by moving control vertices in the subdivision model together with a global
transformation that translates, rotates and scales the model as a whole. A manually
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constructed Doo-Sabin surface is used as a template for representing the endocardial
borders, where the model control vertices are allowed to move in the surface normal
direction to alter the shape.

The tracking framework consists of five separate stages, namely (1) state
prediction, (2) evaluation of tracking model, (3) edge measurements, (4) measurement
assimilation, and (5) measurement update [9].

Endocardial edge detection methods are employed during the edge measurements
stage of the framework. First, N 1D intensity profiles (I1, I2, . . . IN ) are extracted,
where each profile is centered by an endocardial surface point and oriented in a
surface normal direction. Ii,k is used for referring to the intensity value of the ith

profile’s kth sample, and M gives the total number of samples in each profile. Next,
an edge detection method is employed for estimating the endocardial edge positions
by processing the intensity profiles. Generalized STEP detectors, and a ML detector
combining the responses of multiple generalized detectors are described in the following
subsections.

7.2.1 Generalized Step Criterion Edge Detectors

The classical step criterion edge detector assumes that the intensity profile Ii forms a
transition from one intensity plateau to another. It calculates the heights of the two
plateaus for each index value, and selects the index with the lowest sum of squared
differences between the criteria and the image data. For each profile, the edge index
is estimated as:

θ̂STEPi = argminα

α∑
t=1

((
1

α

α∑
j=1

Ii,j

)
− Ii,t

)2

+

M∑
t=α+1

((
1

M − α

M∑
j=α+1

Ii,j

)
− Ii,t

)2

.

(7.1)

If the plateau heights for the determined edge index are similar (θ̂STEPi = α and
1
α

∑α
j=1 Ii,j = 1

M−α
∑M
j=α+1 Ii,j), then the edge index is reset to the profile center by

θ̂STEPi = M
2 .

The minimization task in Equation 7.1 can alternatively be represented as,

θ̂STEPi = argminα∈{1,2...M}

 M∑
j=1

[Ii,j − fα (j)]
2

 , (7.2)

with a piecewise constant function fα minimizing,

minβω0 ,β$0

 α∑
j=1

[Ii,j − βω0 ]
2

+

M∑
j=α+1

[Ii,j − β$0 ]
2

 . (7.3)

The STEP detector optimizes three unknown variables: (1) βω0 giving the estimated
intensity value for the blood pool, (2) β$0 giving the estimated intensity value for the
myocardium, and (3) α giving the expected endocardial position. More explicitly,
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the STEP detector (1) fits an optimal single knot piecewise constant function to an
intensity profile for each knot position (Equation 7.3), (2) then selects the optimal
knot position (Equation 7.2). Both the function fitting and knot selection procedures
are optimal in the LS sense.

The idea can be generalized to kth order, such that STEPk fits an optimal single
knot piecewise kth order polynomial function for each knot position instead. Using the
notations from Equations 7.2 and 7.3, the generalized kth order detector computes,

θ̂STEPki = argminα∈{1,2...M}

 M∑
j=1

[
Ii,j − fkα (j)

]2 , (7.4)

with a piecewise kth order polynomial function fkα minimizing,

minβω0 ,βω1 ,...βωk

 α∑
j=1

[
Ii,j −

(
βω0 + j · βω1 + j2 · βω2 + . . . jk · βωk

)]2+ (7.5)

minβ$0 ,β$1 ,...β$k

 M∑
j=α+1

[
Ii,j −

(
β$0 + j · β$1 + j2 · β$2 + . . . jk · β$k

)]2 .

The regression task of finding the optimal parameters can be performed solving

βω =
(
DT
αDα

)−1
DT
αy, where

βω = [βω0 , β
ω
1 , . . . , β

ω
k ]
T
, Dα =


1 j · · · jk

1 j · · · jk

...
...

. . .
...

1 j · · · jk

 , y = [Ii,1, Ii,2, . . . , Ii,α]
T
. (7.6)

Dα is a α×(k + 1) constant design matrix that can be computed offline for all possible

α values (≤M). Please note that the computation of β$ = [β$0 , β
$
1 , . . . , β

$
k ]

T
follows

a similar method as the βω’s (see Figure 7.1).

7.2.2 Maximum Likelihood Edge Detector

STEPk makes an assumption that the myocardium and blood pool sections of a given
intensity profile can be represented using kth order polynomial functions. However,
this assumption might only be valid for parts of the endocardial surface and cardiac
cycle. As an example, STEP0 might be a proper detector for the apical region, while
performing poor for the basal anterior region at the end systole (ES). On the other
hand, STEP2 might outperform other generalized detectors for the apical region at ES,
and produce highly biased detection results at the end diastole (ED). The responses
of the generalized STEP detectors with orders ≤ p can be combined using a statistical
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Figure 7.1: The endocardial edge detection with generalized STEP detectors. (A) The
target image and the intensity profile (red) are represented. (B-1) 0th , (B-2) 1st and
(B-3) 2nd order STEP edge detections are shown; x axis gives the spatial position,
y axis gives the intensity, red dots show the image intensity values on the intensity
profile, black lines (curves) are the fitted piecewise polynomial functions, green regions
show the minimized energy functions from Equation 7.4, and α shows the detected
edge position.

learning approach, where the learned confidences of the base detectors for a given
spatial and temporal position determine their weights.

The system can be described for the ith intensity profile at cardiac cycle position
ζ ∈ [0 : ES, 1 : ED] using a general linear model as:

si,ζ = 1θi,ζ + bi,ζ + wi,ζ , (7.7)

where

1. θi,ζ is the unknown endocardial edge position (scalar valued),

2. si,ζ =
[
θ̂STEP0

i,ζ , θ̂STEP1

i,ζ , . . . θ̂
STEPp
i,ζ

]T
is the measurement vector for the base

edge detectors,

3. bi,ζ =
[
BiasSTEP0

i,ζ , BiasSTEP1

i,ζ , . . . Bias
STEPp
i,ζ

]T
is the learned bias vector,

4. wi,ζ is the noise vector with a learned Gaussian probability distribution function
N (0, Ci,ζ) for the ith intensity profile at time ζ.

Note that Ci,ζ is a p× p symmetric matrix holding the error covariances between the
base detectors (e.g. Ci,ζ (q, q) holds the error variance of STEPq edge estimations, and
Ci,ζ (q, r) holds the error covariance between STEPq and STEPr edge estimations for
the ith intensity profile at ζ). The bias vector can be merged with the measurement
vector giving,

yi,ζ = 1θi,ζ + wi,ζ . (7.8)

Maximum likelihood estimator of θi,ζ can be derived as [8]:
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Figure 7.2: Overview of the ML estimator. Training stage produces a ML model. For
a given test image, (1) the base detectors produces their estimates (green, blue and
orange meshes), (2) the bias of the estimates are eliminated using the ML model, and
(3) the base estimators are weighted and fused using the ML model (yellow mesh).

θ̂ML
i,ζ =

1TC−1
i,ζ

1TC−1
i,ζ 1

yi,ζ . (7.9)

θ̂ML
i,ζ is an unbiased estimator with the variance of σ2

i,ζ =
(
1TC−1

i,ζ 1
)−1

. The

estimator variance can be utilized as the measurement noise in the Kalman filter. ML
endocardial edge estimations for the model at ζ are given as,

θ̂ML
i,ζ ∼ N

(
θi,ζ , σ

2
i,ζ

)
, i = 1, . . . , N. (7.10)

Please see Figure 7.2 for an overview of the ML training and testing processes.

7.3 Results

3D echocardiography was performed on 10 healthy subjects and 19 subjects with
recent first time myocardial infarction, using a Vivid 7 (26 recordings) or a Vivid E9
(3 recordings) ultrasound scanner (GE Vingmed Ultrasound, Norway) with a matrix
array (3V) transducer. The endocardial border segmentation of the recordings was
performed by a trained medical doctor using a semi-automatic segmentation tool (4D
AutoLVQ, GE Vingmed Ultrasound, Norway).
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An N -fold cross validation (CV) was applied for the evaluation of the ML method
(STEP-ML) using the STEP0, STEP1 and STEP2 as the base detectors. For each
testing fold, the other folds were used for learning a ML model at the ED and ES
frames. The ML model included bias, covariance and corresponding ML weights for
the base detectors at 528 evenly distributed endocardial surface positions (see Figure
7.3). The learned model was later interpolated between ED and ES through the
cardiac cycle using a linear interpolation. For the testing, (1) STEP-ML detector was
used in connection to the Kalman tracking framework with the learned ML model.
The error measurements including the (a) absolute surface point error (ASPE) giving
the average absolute distance of predicted surface points to a ground truth surface, (b)
squared surface point error (SSPE) giving the average squared distance of predicted
surface points to a ground truth surface, and (c) absolute volume error (AVE) giving
the average absolute volume error of predicted surfaces were computed. Similar error
measurements were also computed for the STEP0, STEP1 and STEP2 detectors using
all 29 recordings directly without a CV (as these base detectors do not require a
training). For a comparison, a previously defined ML method (CLS-ML) [8], which
uses MG, STEP and MFMC as the base detectors, was also evaluated via N -fold CV
(see Table 7.1).

Signed surface error polar plots, showing the average signed distances between
the predicted and ground-truth surfaces using 17-segment model of the American
Heart Association [10], for the STEP0, STEP1, STEP2 and STEP-ML detectors are
represented in Figure 7.4.

In the Kalman tracking framework, a handcrafted Doo-Sabin endocardial model
consisting of 20 control points was used as LV model [9]. Edge measurements
were performed in 528 intensity profiles distributed evenly across the endocardial
surface. Each profile consisted of 30 samples, spaced 1 mm apart. During the edge
detection, normal displacement measurements that were significantly different from
their neighbors were discarded as outliers. The tracking framework is implemented in
C++, and processed each frame in 15.5ms with STEP0, 16.3ms with STEP1, 17.7ms
with STEP2, 46.6ms with STEP-ML, and 81ms with CLS-ML when executed on a
2.80 GHz Intel Core 2 Duo CPU.

ASPE [mm] SSPE [mm2] AVE [%]

STEP0 2.211− 2.153 8.862− 8.274 15.718− 13.674
STEP1 2.019− 2.326 7.467− 9.949 10.166− 19.421
STEP2 2.268− 2.941 10.831− 15.428 13.137− 30.547

STEP-ML 1.982− 2.057 8.164− 8.129 12.346− 13.562
CLS-ML 1.999− 2.043 7.542− 7.545 12.592− 14.298

Table 7.1: Absolute surface point (in mm) , squared surface point (in mm2), and
absolute volume (in percentages) errors at ED and ES frames, [ED error - ES error],
for the Kalman tracking framework using STEP0, STEP1 and STEP2, STEP-ML and
CLS-ML edge detectors.
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Figure 7.3: 17-segment model representations for the learned ML weights for the base
detectors: +2 weight is red, -2 weight is blue, 0 weight is green. Please note that the
base detector weights vary spatially and temporarily. For a given endocardial surface
and cardiac cycle position, the sum of the weights is always 1, where the negative
weights are allowed.

Figure 7.4: 17-segment model representations for the signed surface error: 4mm
overestimation is red, 4mm under-estimation is blue, 0mm no-error is green.

7.4 Discussion and Conclusion

In this paper, we first introduced the generalized step criterion edge detectors, then
combined the responses of these generalized detectors using a space-time dependent
ML approach. To our knowledge, step criterion edge detector has not been generalized
to higher order polynomial functions prior to this study.

Our analyses showed that STEP1 and STEP0 outperform the other generalized
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STEP detectors at ED and ES frames respectively (see Table 7.1, rows 1,2 and
3). These results suggest that the intensity distribution of myocardium and blood
pool can be modeled better by constant functions at ES, and linear functions at
ED. The sole application of STEP2 leads to worse segmentation results (see Table
1, row 3). However, the relatively high ML weight of STEP2 at mid inferolateral
segment during ED shows the positive contribution of this base detector (see Figure
7.3, row 1). Accordingly, the combined usage of generalized STEP detectors, STEP-
ML, produces better tracking results compared with the individual applications of
the generalized detectors (see Table 7.1, row 4). Furthermore, STEP-ML introduces
a significantly lower regional estimation bias (see Figure 7.4). This is due to the
learned bias information stored in the ML model, which is factored in during the ML
estimation.

STEP-ML produced comparable results with the previously defined ML detector,
CLS-ML, [8] (see Table 7.1, rows 4 and 5). This shows that the linear combination of
generalized STEP detectors can generate close results to MG and MFMC detectors,
which are utilized in CLS-ML. Furthermore, STEP-ML reduces the processing time
for each frame over 42% with respect to CLS-ML.

The current and previously proposed ML based approaches seek for an optimal
linear combination of multiple base detectors. The non-linear detector fusion
approaches might be investigated in a future study. Utilizing base detectors with
well defined energy functions, such as the generalized STEP and MFMC, allows the
definition of unified energy functions for the endocardial edge detection process. The
unified energy functions might help us understand the visual perception process for
this specific task; the derivation and usage of these functions might also be investigated
in a future study.
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We introduce an isoparametric finite element analysis method for models
generated using Doo-Sabin subdivision surfaces. Our approach aims to
narrow the gap between geometric modeling and physical simulation that
have traditionally been treated as separate modules. This separation is
due to the substantial geometric representation differences between these
two processes. Accordingly, a unified representation is investigated in
this study. Our proposed method performs the geometric modeling via
Doo-Sabin subdivision surfaces, which are defined as the limit surface of
a recursive Doo-Sabin refinement process. The same basis functions are
later utilized to define isoparametric shell elements for physical simulation.
Furthermore, the accuracy of the simulation can be adjusted by the
basis refinements, without changing the geometry or its parametrization.
The unified representation allows rapid data transfer between geometric
design and finite-element analysis, eliminating the need for inconvenient
remodeling/meshing procedures commonly deployed. Experiments show that
the physical simulation accuracy of the introduced models quickly converges
to high resolution finite element models, using classical hexahedron and
triangular prism elements.

8.1 Introduction

Finite element analysis (FEA) tools have dramatically enhanced their functionalities
over the recent years by (1) incorporating tools for more realistic physical simulations,
(2) increasing the dimensional limits of mechanical models, and (3) developing
computational means enabling engineers to create and evaluate alternative analysis
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models [1]. Computer aided geometric design (CAGD) systems have also gone through
evolutionary improvements by (1) developing new mathematical representations of the
designed objects, and (2) factoring in “physics-like” considerations into the design
process [2]. Despite the vast developments in the field, severe integration problems
are encountered when combining CAGD and FEA systems, mainly due to geometric
representation differences [3].

Models generated by CAGD systems represent exact geometries, and are typically
not suitable as direct inputs for finite-element modelers. This gap is often filled by
intermediate tools that convert high-order CAGD models into low-order finer meshes.
However, the meshing process can be slow, and cause approximation errors [4]. Even
if the meshing is completed successfully, the outputs of an FEA system cannot be
directly applied to the original geometric model since there is no intuitive mapping
back to the original design degrees of freedom [5]. These limitations can become a
major problem when design and analysis are performed back and forth over several
iterations. The design-analysis loop is built around a trade-off between simulation
speed and precision. Rapid analyses are preferred in the preliminary stages of the
process. On the other hand, highly accurate analyses are needed in the later stages.
Setting up a proper trade-off is also a challenging task when the different geometric
representations are utilized in different tools. Unified representation methods, allowing
CAGD and FEA to utilize similar model definitions, have been introduced for several
geometric representation schemes to overcome these limitations.

Doo-Sabin subdivision method is conceptually simple and provides compact
representations for the surface models, when the C1 continuity is adequate. It has been
used for the geometric modeling of variety of curved objects, such as internal organs,
over the recent years [6–8]. These studies involve physical simulations, and might
greatly benefit from rapid design-analysis loops to produce mechanically constrained
models. However, there has been no publications defining a unified representation
scheme for the models generated using Doo-Sabin subdivision surfaces prior to this
study. The major motivation for our study is to eliminate this gap by introducing
a unified representation for CAGD and FEA when Doo-Sabin surfaces are deployed
during the design process. First, the basis functions for the Doo-Sabin limit surfaces
are described using an iterative algorithm. Then, the defined basis functions are
utilized for the isoparametric formulation of the shell elements during the physical
simulation. Degenerated solids based approach, which factors in shear deformations
via Mindlin plate theory, is employed to formulate shell elements. The accuracy of
the simulation can be adjusted by basis refinements without changing the geometry or
its parametrization. The proposed method avoids the need for intermediate meshing
tools, and offers an intuitive control for the trade-off between the simulation-speed
and precision. The design and analysis process can be performed as:

1. The geometrical modeling is performed using Doo-Sabin limit surfaces, which
are bi-quadratic B-spline surfaces with C1 continuity [9].

2. The generated Doo-Sabin surface’s thickness information is defined to form a
solid model.
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Figure 8.1: Design and analysis of a tetrahedral model. (A) Control point wire-
frame mesh and the corresponding Doo-Sabin limit surface are shown. (B) Model
thickness is set. (C) Boundary and force surfaces are represented with blue and bronze
colors respectively. (D) Analysis is performed with the desired accuracy. Interpolated
principal stress fields are shown for not refined (left), refined (middle) and doubly
refined (right) basis functions.

3. The stiffness matrix of the model is assembled using shell elements with varying
thicknesses. A degenerated solids based approach is adopted for modeling the
shells, where the element shape functions are determined by the basis functions
of the limit surface. FEA precision may be increased by refining the model basis
function multiple times prior to stiffness matrix assembly.

4. Boundary conditions are set for delineating the fixed surface components.

5. Surface forces are applied, and the model strains and stresses are measured.

6. Based on the analysis results, the design-analysis loop may be ended, or
continued by going back to the modeling stage.

Figure 8.1 illustrates the major steps of the process for a tetrahedral model.
The outline of the paper is as follows: Section 8.2 goes through the recent work

on subdivision surfaces, and discusses the unified representation methods for design
and analysis. The Doo-Sabin subdivision surface scheme is described, and the limit
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surface basis functions are derived in Section 8.3. Section 8.4 is dedicated to the
finite element analysis. Subsection 8.4.1 provides a brief overview of the isoparametric
analysis, whereas Subsection 8.4.2 describes the degenerated solid element concept and
shell elements. Subsection 8.4.3 gives the strain-stress formulation for the proposed
method, and Subsection 8.4.4 provides a description of the stiffness matrix assembly.
In Section 8.5, the proposed method’s convergence properties are represented using
four distinct models. We conclude, in Section 8.6, with a discussion of directions of
current and future work.

8.2 Previous work

8.2.1 Subdivision Surfaces

Subdivision surfaces are popular for computer animation, computer aided design and
geometric modeling tasks due to their conceptual simplicity and efficiency [10]. The
subdivision process constructs smooth surfaces through a converging procedure of
repeated refinements starting from an initial control mesh (see Figure 8.2). Each
subdivision iteration produces a finer mesh from a coarser mesh by using a set of
refinement rules that define a subdivision scheme [11, 12]. The first subdivision
schemes were introduced in 1978 by Catmull and Clark [13] and Doo and Sabin [9]
to address some of the drawbacks of the conventional spline patches when modeling
arbitrary topology surfaces. Since then, many other schemes have been proposed and
studied [14].

Subdivision schemes are categorized as being either approximating or interpolating.
The limit surface approximates the initial polygonal mesh for approximating methods,
meaning that the control vertices do not necessarily lie on the limit surface. Catmull-
Clark, Doo-Sabin,

√
3 subdivision [15], Mid-Edge subdivision [16], and Loop [17] are

some of the most widely used approximating schemes. In the interpolating methods,
the control vertices always lie on the limit surface as the subdivision process adds new
control points interpolating the existing ones. Some examples for the interpolating
methods are Kobbelt [18] and Butterfly [19] schemes.

8.2.2 Unified Representation Methods

The unified representation paradigm denotes a design and analysis environment
in which the geometric model utilizes the same underlying representation as the
appropriate finite-element simulation [5]. The concept was first applied for adaptively
refined quadrilateral meshes that approximate smooth surfaces with arbitrary
topologies in [18]. This study introduced a simple interpolating subdivision scheme
that generated almost planar faces, which were modeled by quadrilateral elements
during the analysis.

The unified representation has been shown to be applicable for spline based models.
In [1], B-spline basis functions were utilized for geometrical modeling of surface patches
and the formulation of isoparametric finite elements. Wang et. al. [20] extended the
method for arbitrary manifold spline surfaces [21]. Their approach represented the
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Figure 8.2: Two steps of Doo-Sabin refinements and the corresponding limit surfaces
for cube and and heart’s left ventricle surface models.

deformations as a linear combination of triangular B-splines over shell elements, then
the thin-shell simulation was computed through the minimization of Kirchhoff-Love
energy. In [4], basis functions generated by nonuniform rational B-splines (NURBS)
were employed to construct exact geometrical models, and to model NURBS solids
for the analysis. More recently, Benson et. al. [22] introduced a NURBS based
isogeometric analysis method formulating the shells structures by Reissner – Mindlin
theory, based on the degenerated solid concept. In [23], Kirchhoff – Love shell elements
were used for the isogeometric analysis of the NURBS surface models.

The unified approach has also been applied to subdivision surface based models
over the last decade. In [5, 24, 25], Loop subdivision surfaces were utilized as a
common foundation for modeling, simulation, and design. Thin shell elements were
defined using Loop basis functions, and their interpolated displacement fields were
found using Kirchhoff-Love theory of thin shells. Burkhart et. al. [26] represented
a unified approach for three-manifold hexahedral meshes, where Catmull-Clark solids
were used for the geometric modeling and the physical simulation.

Previously defined unified methods for other subdivision schemes can not be
modified for Doo-Sabin surface models with thickness information in intuitive manners.
[26] requires an additional hexagonal meshing procedure prior to FEA for Doo-Sabin
surface models; it does not provide a unified representation for CAGD and FEA
stages in our case. [5, 24, 25] consider surface models that can be represented using
shell elements as our study. However, these methods inherit thin shell assumptions,
which neglect the shear deformations. This would limit the FEA accuracy of the
geometric models represented using thick shells. We introduce an approach employing
degenerated solids based shell elements to model Doo-Sabin surface patches. Our
method factors in Mindlin plate theory to properly simulate shear deformations.
Hence, it provides a useful and novel unified solution for subdivision surface models
with thickness information.
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8.3 Evaluation of Doo-Sabin subdivision surfaces

The Doo-Sabin surface [9] is a type of subdivision surface that generalizes bi-quadric
B-spline surfaces to an arbitrary topology. Doo-Sabin subdivision process can be
described using a matrix notation, as utilized by Stam for Catmull-Clark surfaces in
[27].

For a given polyhedron, there is a surface patch for each control vertex q that is
defined using (1) the surface faces including q, and (2) all neighboring control vertices
of q describing these faces. Control vertices of a surface patch with m control vertices
can be represented using a matrix notation as,

Qn = [q1, q2 , . . . , qm]
T
, (8.1)

where (1) n ≥ 0 gives the number of performed subdivisions, and (2) qi is a
column vector of length three giving the Cartesian coordinates of the control vertex
i ∈ {1, 2, . . . , m}. The surface patch can be subdivided into four new sub-patches
by multiplying subdivision matrix S with Qn, as is shown in Figure 8.3. The content
of S originates from the regular Doo-Sabin subdivision rules, which are outlined in
Appendix A. Control vertices for each sub-patch k ∈ {0, 1, 2, 3} can be extracted from
the subdivided control vertices using a picking matrix Pk, such that Qn+1,k = PkSQn.

The sub-patch having the control vertices Qn+1,k can either be (1) a regular
patch including four quadrilateral faces, or (2) an irregular patch including three
quadrilateral faces and an irregular face (valence 6= 4). If the sub-patch is a regular
patch, then its limit surface can be evaluated directly since the sub-patch is a bi-
quadric spline patch. Otherwise, if the sub-patch is an irregular patch, a successive
subdivision operation on it yields a single irregular patch and three regular patches. By
assuming, without loss of generality, that the irregular face in a sub-patch is located
top-left, then the corresponding picking matrix Pk gives a regular 3 × 3 bi-quadric
control vertex mesh when k 6= 0, and an irregular mesh when k = 0. This relation
can be exploited by performing repeated subdivisions α times until the desired surface
point is no longer within an irregular patch (k 6= 0). Denoting S0 = P0S, we can
express this as Qα,k = PkSSα−1

0 Q0.
Each limit surface position of a surface patch is uniquely defined using parametric

patch coordinates (ξ, η) that vary between 0 and 1. The number of the required
subdivision steps α depends on the logarithm of (ξ, η) as α = b−log2 (max {ξ, η})c.
The sub-patch to pick after the final subdivision is determined using the following
criteria:

k =


1 if (2αξ > 1/2) and (2αη < 1/2)

2 if (2αξ > 1/2) and (2αη > 1/2)

3 if (2αξ < 1/2) and (2αη > 1/2)

(8.2)

Accordingly, the subdivision mapping function Ω can be defined as Ω (ξ, η)→ (k, α)
[27].

Direct evaluation of surface points can be performed for any patch location (ξ, η)
except (0, 0), by subdividing a sufficient number of times, until the new subdivided
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Figure 8.3: Illustration of the Doo-Sabin subdivision process. The control vertices
Qn that define the initial surface patch (top-middle) are subdivided into new
control vertices Qn+1 (top-right) by multiplying Qn with the subdivision matrix S.
Application of the picking matrix Pk on Qn+1 further divides the subdivided mesh
into four sub-patches that together span the same limit surface area as the original
patch.

patch below (ξ, η) no longer contains an extraordinary face, and treating the resulting
sub-patch as an ordinary bi-quadric spline surface. For locations near (0, 0), an
approximate surface evaluation can be obtained by perturbing (ξ, η) slightly to prevent
α from growing beyond a predefined upper limit. However, this approximation might
only be necessary for the visualization purposes, and can be completely avoided during
the finite element analysis (elaborated in Subsection 8.4.4).

Basis functions with regards to the original non-subdivided control vertices can
similarly be computed by:

b (ξ, η) |Ω(ξ,η)→(k,α)=
(
PkSSα−1

0

)T
b̃ (tk,α (ξ, η)) , (8.3)

where (1) b̃ is the regular bi-quadric B-spline basis function defined in Appendix B,
and (2) tk,α is a domain mapping function used to map (ξ, η) to the parametric patch
coordinates within the desired sub-patch:
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tk,α (ξ, η) =


(
2α+1ξ − 1, 2α+1η

)
if k = 1(

2α+1ξ − 1, 2α+1η − 1
)

if k = 2(
2α+1ξ, 2α+1η − 1

)
if k = 3

(8.4)

Partial derivatives of the basis functions, bξ and bη, are similarly computed by

replacing b̃ (ξ, η) with the respective derivatives of the B-spline basis functions in the
formula. Surface positions can then be evaluated as an inner product between the
control vertices and the basis functions

x (ξ, η) = QT
0 b (ξ, η) . (8.5)

Note that this approach is not dependent on diagonalization of the subdivision
matrix. Doo–Sabin subdivision matrices are not in general diagonalizable, hence the
direct evaluation approach produced in [27] is not computationally efficient for Doo-
Sabin surfaces. However, repeated matrix multiplications performed α times will result
in the same result. The associated increase in computational complexity due to the
repeated matrix multiplications will not be a burden if the evaluation of basis functions
is performed only once, and later re-used to compute surface points regardless of
movement of the associated control vertices.

8.4 Finite element analysis

FEA is a numerical technique for approximating the field variables, also called the
unknowns, encountered in the engineering problems. In a continuum, there is an
infinite amount of field variables. The finite element procedure reduces these unknowns
to a finite number by dividing the solution domain into small parts called the elements.
The field variable distribution in each element is described using the shape functions,
defined between vertices. After selecting the vertices and the appropriate shape
functions, the element properties can be expressed by an element stiffness matrix
Ke. In solid mechanics, Keue = Fe gives the relationship between the element vertex
displacement vector ue and force vector Fe using Ke. The contribution of each element
is finally assembled into the model stiffness matrix Km, completing the physical model
definition.

A Doo-Sabin surface patch with thickness can be modeled using a shell element.
The following sections represent an isoparametric definition for shell elements and the
corresponding element stiffness matrix formulation. The assembly of element stiffness
matrices into a model stiffness matrix is an intuitive task, hence it is not covered in
this paper. However, the interested reader is referred to [28] for further information
on the topic.

8.4.1 Isoparametric Formulation

The isoparametric formulation [29] uses a mapping function between natural and
physical coordinate systems to define arbitrary object boundaries. In this concept,
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the problem domain is provided in the physical coordinate system, and the element
shape functions are defined in terms of the natural coordinate system. The Doo-
Sabin surface patches are inherently represented with an isoparametric formulation,
where the basis functions induced by subdivision are utilized as the shape functions.
Assuming that the natural coordinates ξ and η are scaled between -1 and 1, Doo-Sabin
basis functions provide a proper mapping between the natural and physical coordinate
system as,

x =

m∑
i=1

bi (ξ, η) qi, (8.6)

where qi is the physical coordinate of the ithcontrol vertex, bi is the corresponding
basis function, and x = [x, y, z]

T
is the mapped physical coordinate. Equation 8.6

needs to be further modified to factor in the element thickness, and then used for
modeling an isoparametric shell element during the analysis.

8.4.2 A-I-J Element

The degenerated solids is an isoparametric formulation method for the shell elements.
Many variations of the concept have been proposed and used [30], where the original
definition by Ahmad et. al. [31] (A-I-J element) is utilized in this study. The approach
converts 3D elements into 2D elements for the finite element analysis using 3D elastic
theory. As an example, a 3D brick element is reduced to a shell element by deleting
the intermediate vertices in the thickness direction, and then by projecting the vertices
on each surface to the mid surface. However, the vertices on the 2 outer surfaces are
not removed to keep the analysis in 3D, and to model shearing deformations. The
theory is developed with the following assumptions:

1. The normal strains and stresses in the direction of element thickness are always
zero. Therefore, the strain energy associated with the stresses perpendicular to
the mid surface are neglected.

2. The mid surface normals may not remain as normals after a deformation, however
they remain straight as used in Mindlin plate theory [32]. Hence, the shear strain
energy needs to be considered during the analysis.

In the A-I-J method, solid elements are described using three surfaces, namely the
top, bottom and mid (see Figure 8.4). Top and bottom surfaces are defined on the
positive and negative surface normal directions using a similar basis function as the
mid surface. These surfaces’ control vertex matrices are

Qtop =
[
qtop1 , qtop2 , . . . , qtopm

]T
, (8.7)

Qbottom =
[
qbottom1 , qbottom2 , . . .qbottomm

]T
, (8.8)

where Q =
(Qtop+Qbottom)

2 .
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Figure 8.4: Geometry of the shell element. Control vertices of the bottom, mid and
top surfaces are shown with blue, red, and green spheres respectively.

Assuming that an additional natural parameter ζ gets values between -1 and 1 on
the respecting faces of the element; A-I-J defines the relationship between the physical
and natural coordinates as

x =

m∑
i=1

bi (ξ, η)
(1 + ζ)

2
qtopi +

m∑
i=1

bi (ξ, η)
(1− ζ)

2
qbottomi , (8.9)

where qtopi and qbottomi are the ith control vertices for the top and bottom surfaces
respectively. Using the mid surface control vertices, Equation 8.9 can alternatively be
written as

x =

m∑
i=1

bi (ξ, η)

{
qi + ti

ζ

2
v3i

}
, (8.10)

with

ti =
∣∣qtopi − qbottomi

∣∣ and v3i =
qtopi − qbottomi∣∣qtopi − qbottomi

∣∣ ,
where ti and v3i give the surface thickness and the surface normal direction for the
ith control vertex respectively.

During the FEA of the shell structures, a local coordinate system (x′, y′, z′) of the
element needs to be determined. By applying a linear interpolation, an orthogonal set
of local coordinate axes for any point in the element are given by,
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v3 (ξ, η) =

∑m
i=1 bi (ξ, η) v3i

|
∑m
i=1 bi (ξ, η) v3i|

, (8.11)

v1 (ξ, η) =
i× v3

|i× v3|
, (8.12)

v2 (ξ, η) = v3 × v1, (8.13)

with i = [1, 0, 0]
T

. Therefore, the coordinate transformation matrix between the
physical and local coordinates can be written as θ = [v1, v2, v3].

8.4.3 Strains and Stresses

The displacement field definition is derived intuitively from Equation 8.10. First, for
each control vertex, two other axis vectors that are perpendicular to ~V3i are defined
as,

v1i =
i× v3i

|i× v3i|
and v2i = v3i × v1i.

Then, the displacement field u = [u, v, w]
T

of any point in the element is given by,

u =

m∑
i=1

bi (ξ, η)

{
ui + ti

ζ

2
[v1i,−v2i]

[
αi
βi

]}
, (8.14)

where (1) ui = [ui, vi, wi]
T

is the displacement vector for the ith control vertex, and
(2) αi and βi are scalar rotations in radians around v1i and v2i axes respectively.
Equation 8.14 expresses the displacements in the physical coordinates, and assumes
zero strains in the ζ direction. This formulation has five degrees of freedom at each
control vertex; three parameters for the translations in x, y and z axes, and two
parameters for the nodal rotations.

The strain vector ε = [εx′ , εy′ , γx′y′ , γx′z′ , γy′z′ ]
T

is defined by the first partial

derivatives of the local displacement vector u′ = [u′, v′, w′]
T

by,

ε =

[
∂u′

∂x′
,
∂v′

∂y′
,
∂u′

∂y′
+
∂v′

∂x′
,
∂u′

∂z′
+
∂w′

∂x′
,
∂v′

∂z′
+
∂w′

∂y′

]T
, (8.15)

where (1) εx′ and εy′ are the normal strains in x′ and y′ directions, and (2) γx′y′ ,
γx′z′ and γy′z′ are the shear strains in the x′y′, x′z′ and y′z′ planes respectively [33].
Please note that the normal strain in z′ direction is neglected due to the first shell
assumption.

The relation between the strain and stress (σ) vectors can be formed using the
Generalized Hooke’s Law, which states that the components of stress are linearly
related to the components of strain by σ = Dε. In this study, D is defined for
an isotropic material as,
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D =
E

(1 − µ2)


1 µ 0 0 0
µ 1 0 0 0
0 0 1−µ

2
0 0

0 0 0 1−µ
2

0
0 0 0 0 1−µ

2

 , (8.16)

where E is the Young’s modulus and µ is the Poisson’s ratio.

8.4.4 Assembly of Element Stiffness Matrix

Using the standard variational formulation, the stiffness matrix of an element is given
by:

Ke =

∫∫∫
BTDBdxdydz, (8.17)

where the strain-displacement matrix B relates strains to control vertex displacements
(δ) by ε = Bδ. To compute B, firstly the components of ε are found using, ∂u′

∂x′
∂v′

∂x′
∂w′

∂x′
∂u′

∂y′
∂v′

∂y′
∂w′

∂y′

∂u′

∂z′
∂v′

∂z′
∂w′

∂z′

 = θT

J−1


∂u
∂ξ

∂v
∂ξ

∂w
∂ξ

∂u
∂η

∂v
∂η

∂w
∂η

∂u
∂ζ

∂v
∂ζ

∂w
∂ζ


 θ (8.18)

with

J =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

 , (8.19)

where (1) J is the Jacobian matrix derived using Equation 8.10, and (2) the derivatives
∂u
∂ξ ,

∂v
∂η . . . etc. are obtained using Equation 8.14. After assembling ε, B can be found

solving ε = Bδ = [B1, B2, . . . , Bm] [δ1, δ2, . . . , δm]
T

where δi = [ui, vi, wi, αi, βi]
T

[33]. The infinitesimal volume computed in physical coordinates can be expressed in
terms of the volume in natural coordinates as dxdydz = |J| dξdηdζ.

Finally, Ke =
∫∫∫

BTDB |J| dξdηdζ can be numerically estimated by Gauss
Legendre quadrature rules. Using two samples in ζ direction and minimum four
samples in both ξ and η directions is sufficient for thin shell element stiffness
matrix calculations [31]. The abscissas of the selected Gaussian quadrature rule
should exclude parametric coordinates (ξ = 0, η = 0, ζ) to avoid approximate basis
evaluations.

8.5 Results

The accuracies of the physical models using Doo-Sabin limit surface patch elements
were evaluated by comparing them against the high resolution classical finite element
models. The analyses were performed on four models: the smoothed cube (S-cube),
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Figure 8.5: Geometry of the testing models.

left ventricle (LV), l-shaped bar (L-bar) and edgy torus (E-torus). These models
were generated using Doo-Sabin subdivision algorithm, where the limit surfaces define
the exact model geometries. Dimensional properties and boundary conditions of the
models are represented in Figure 8.5. The model thicknesses were set to 2mm. Young’s
modulus and Poisson’s ratio values were defined as 3.0 GPa and 0.48 respectively.

For each of the Doo-Sabin models, a high resolution reference model was computed
as follows:

1. A polygonal model was generated: a low resolution Doo-Sabin model was refined
multiple times till the average distance between the limit and refined model
surfaces was below a predefined threshold value ς = 0.05mm.

2. Valence ≥ 5 faces were eliminated: the refined model’s surface faces with valences
greater than 4 were further divided geometrically.

3. A solid finite element model was computed: (a) the refined surface faces with
valence= 4 were used as the middle surfaces of 8-node hexahedron (brick)
elements with 24 degrees of freedom, (b) the refined surface faces with valence= 3
were used as the middle surfaces of 6-node triangular prism (wedge) elements
with 18 degrees of freedom. Interested reader is referred to [34] for the derivations
of these classical elements.

4. The element thicknesses were set: hexahedron and wedge elements were
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Figure 8.6: Surface displacement error convergences for the S-cube (1st row), LV (2nd
row), L-bar (3rd row), E-torus (4th row) models. Column (A and B): Ground truth
polygonal meshes before and after the surface forces are applied on the bronze colored
elements in the directions shown in red. Columns (C, D and E): non-refined, refined,
and doubly refined Doo-Sabin models are colored based on the displacement errors.

assigned similar thicknesses as their corresponding Doo-Sabin limit surface patch
elements.

After generating the reference model, stiffness matrices for the reference model (GT)
and the Doo-Sabin models with non refined (DS0), refined (DS1) and doubly refined
(DS2) basis functions were computed.

For testing the convergence properties of the proposed method, the surface forces
were applied on the GT, DS0, DS1 and DS2 models as shown in Figure 8.6. Then,
the deformed Doo-Sabin model surfaces were compared against the corresponding
deformed reference model surfaces. The total number of elements in each model,
stiffness matrix computation times, absolute and percent surface displacement errors
are reported in Table 8.1. The mean and the standard deviation of the absolute surface
displacement errors are plotted in Figure 8.7 for each model.

The simulation accuracies of the Doo-Sabin models converge to the reference
models fairly fast. As represented in Figure 8.7, non-refined S-cube model consisted
of 16 limit surface patch elements, and generated 2.4 mm mean absolute error. On
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Table 8.1: Total number of elements, mean absolute error, percent error and the
stiffness matrix computation times for each model.

S-cube LV
Model GT DS0 DS1 DS2 GT DS0 DS1 DS2

Elements 898 16 56 224 1732 26 108 432
Computation time (sec)a 55.2 1.3 10.2 20.3 369.4 2.3 27.3 105.1

Mean absolute error (mm)b 0 2.4 1.1 0.8 0 2.4 0.6 0.5
Percent error (%)c 0 13.3 5.9 4.6 0 6.7 1.7 1.4

L-bar E-torus
Model GT DS0 DS1 DS2 GT DS0 DS1 DS2

Elements 1410 24 88 352 2056 32 128 512
Computation time (sec)a 209.9 2.3 20.8 80.5 452.1 2.4 30.1 153.8

Mean absolute error (mm)b 0 1.1 0.4 0.3 0 1.9 0.8 0.5
Percent error (%)c 0 5.1 1.9 1.3 0 10.5 4.4 2.8

a The model implementations and analyses were performed using Matlab on a system with
2.80 GHz Intel Core 2 Duo CPU.
b The mean absolute error (MAE) is calculated by finding the average of the absolute surface
displacement errors over the model surface as:

MAE = Averagemodel(—(Model Displacement) - (GT Displacement)—).
c The percent error (PE) is calculated by finding the ratio of MAE to the average of the
absolute GT displacements as:

PE = 100 × MAE / (Averagemodel(—GT Displacement—)).

the other hand, S-cube model (with 56 elements) and doubly refined S-cube model
(with 224 elements) generated 1.1 mm and 0.8 mm mean absolute errors respectively.
Similar error reduction rates were also observed for the LV, L-bar and E-torus models.

The proposed scheme offers a convenient trade-off between the simulation precision
and speed. As an example, let’s look into the analysis of L-bar model. The high
resolution reference model for L-bar consisted of 1410 elements, and its stiffness
matrix was computed in 209.9 seconds (see Table 8.1, L-bar and GT column). The
corresponding refined Doo-Sabin model (DS1) included only 88 elements, and its
stiffness matrix was computed in 20.8 seconds (see Table 8.1, L-bar and DS1 column).
During the simulation scenario, in which the surface forces were introduced on the
model (see Figure 8.6, L-bar row, column-D), DS1 model generated 0.4 mm mean
absolute error and 1.9 percent error (See Figure 8.7). This precision level might be
adequate for early and intermediate stages of the design / analysis loop. Otherwise,
the Doo-Sabin basis function can be further refined to increase the simulation accuracy
with the cost of higher computation times.
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Figure 8.7: The mean (top) and the standard deviation (bottom) of the absolute
surface displacement error for the non-refined, refined and doubly refined Doo-Sabin
models.

8.6 Conclusions and future work

We have introduced a unified representation approach for the models generated
using Doo-Sabin subdivision surfaces. The proposed method (1) avoids the need for
intermediate meshing tools, and (2) offers an intuitive control for the trade-off between
the simulation-speed and precision. The experiments show that the physical simulation
accuracy of the introduced models converges rapidly to high resolution finite element
models, which use classical hexahedron and triangular prism elements.

A-I-J element may experience locking problems, where the element behave extra
stiff, particularly when the shell is very thin [33]. Several methods including the
reduced [35] or cross-reduced [36] integration can be deployed to avoid locking
problems. Locking-free shell elements for this framework might be investigated in
a future study.

Appendix A: Doo-Sabin subdivision matrix

The subdivision weights used for faces consisting of c vertices are used as defined by
Doo & Sabin [9]:
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w
(c)
i,j =

{
(c+ 5) /4c if i = j

(3 + 2 cos (2π (i− j) /c)) /4c if i 6= j
(8.20)

Subdivision of the control vertices within a single face can be expressed as a linear
operation using a subdivision matrix Sc:

Sc =


w

(c)
1,1 w

(c)
1,2 · · · w

(c)
1,c

w
(c)
2,1 w

(c)
2,2 · · · w

(c)
2,c

· · · · · · · · · · · ·
w

(c)
c,1 w

(c)
c,2 · · · w

(c)
c,c

 . (8.21)

Subdivision of whole patches is accomplished by combining Sc for all four faces in
a patch into a composite subdivision matrix S. The structure of this matrix depends
on the topology and control vertex enumeration scheme employed, but construction
should be straightforward.

Appendix B: Basis functions for quadratic B-splines

The 9 tensor product quadratic B-spline functions can be expressed as a product of
two separable basis polynomials for the parametric value ξ and η (i = 0, . . . , 8):

b̃i (ξ, η) = pi%3 (ξ) pi/3 (η) , (8.22)

where “%” and “/” denotes the division remainder and division operators respectively.
pi(y) are the basis polynomials for quadratic B-splines with uniform knot vectors:

2p0 (y) = 1− 2y + y2 (8.23)

2p1 (y) = 1 + 2y − 2y2 (8.24)

2p2 (y) = y2 (8.25)
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[14] D. Zorin, P. Schröder, T. Derose, L. Kobbelt, A. Levin, and W. Sweldens,
“Subdivision for Modeling and Animation,” in SIGGRAPH Course Notes, (New
York), ACM, 2000.

[15] L. Kobbelt, “sqrt(3)-subdivision,” in Proceedings of the 27th annual conference
on Computer graphics and interactive techniques, SIGGRAPH ’00, (New York,
NY, USA), pp. 103–112, ACM Press/Addison-Wesley Publishing Co., 2000.

[16] J. Peters and U. Reif, “The simplest subdivision scheme for smoothing
polyhedra,” ACM Trans. Graph., vol. 16, pp. 420–431, October 1997.

[17] C. Loop, “Smooth Subdivision Surfaces Based on Triangles,” department of
mathematics, University of Utah, Utah, USA, Aug. 1987.

[18] L. Kobbelt, “Interpolatory subdivision on open quadrilateral nets with arbitrary
topology,” Computer Graphics Forum, vol. 15, no. 3, pp. 409–420, 1996.

[19] N. Dyn, D. Levin, and J. A. Gregory, “A butterfly subdivision scheme for surface
interpolation with tension control,” ACM Transactions on Graphics, vol. 9,
pp. 160–169, 1990.

[20] K. Wang, Y. He, X. Guo, and H. Qin, “Spline thin-shell simulation of manifold
surfaces.,” in Computer Graphics International’06, pp. 570–577, 2006.

[21] X. Gu, Y. He, and H. Qin, “Manifold splines,” in Graphical Models, pp. 27–38,
2005.

[22] D. J. Benson, Y. Bazilevs, M. Hsu, and T. J. R. Hughes, “Isogeometric shell
analysis: The reissner-mindlin shell,” Computer Methods in Applied Mechanics
and Engineering, vol. 199, no. 5-8, pp. 276 – 289, 2010. Computational Geometry
and Analysis.

[23] J. Kiendl, K. U. Bletzinger, J. Linhard, and R. Wüchner, “Isogeometric shell
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Chapter 9

Doo-Sabin Surface Models
with Biomechanical
Constraints for Kalman Filter
Based Endocardial Wall
Tracking in 3D+T
Echocardiography

Engin Dikici1, Fredrik Orderud2, Gabriel Kiss1, Anders Thorstensen1

and Hans Torp1

1Norwegian University of Science and Technology, Trondheim, Norway
2GE Vingmed Ultrasound, Oslo, Norway

In this paper, a 3D left ventricle (LV) tracking framework utilizing Doo-Sabin
subdivision surface models is extended with biomechanically constrained
state transitions. First, an isoparametric finite element analysis (FEA)
method for Doo-Sabin surface models is provided. The isoparametric FEA
produces a stiffness matrix for a given endocardial model directly, eliminating
inconvenient remodeling/meshing procedures commonly conducted prior to
FEA. The computed model might lead to inaccurate deformation modes
during the tracking due to hypothesized model shape and FEA parameters.
Accordingly, we introduce a statistical model improvement approach for
modifying the model shape and its stiffness matrix using experimentally
observed endocardial surface variations. Finally, the state prediction stage
of the Kalman tracking framework is formulated to perform constrained
tracking. Comparative analyses show that the biomechanical constraints can
significantly improve the endocardium tracking accuracy of the models with
high control node resolutions.
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9.1. Introduction

9.1 Introduction

This paper considers the problem of endocardial border tracking in 3D+T echocar-
diography recordings. This is a challenging task due to reasons including speckle
noise, shadowing, and the existence of intra-cavity structures (e.g. chordae tendineae,
papillary muscles and valves) [1]. Furthermore, real-time detection of endocardial
borders might be desirable during invasive procedures and intensive care applications.

State-space analysis using Kalman filtering can be employed for the detection
of left ventricle (LV) structures in time-dependent recordings. A Kalman filtering
framework for tracking B-spline models was first introduced by Blake et al. [2]. This
framework was later utilized for rapid tracking of LV in long-axis 2D echocardiography
in [3, 4]. Orderud et al. extended the approach with the use of Doo-Sabin subdivision
models for real-time tracking of 3D echocardiography recordings [5]. These studies
took advantage of compact model representations for rapid tracking, but did not
utilize physical properties to constrain model deformations. Liu et al. introduced
a biomechanical-model constrained state-space analysis framework for the tracking
of short-axis 2D echocardiography recordings [6]. Their study used dense Delaunay
triangulated models and employed basic tri-nodal linear elements during the finite
element analysis (FEA). Due to the triangulated high resolution model representations,
it offered a computationally expensive solution.

The motivation for our study is to combine the compact model representations
with biomechanical constraints for rapid and accurate tracking. To our knowledge, no
work has been published on the biomechanically constrained tracking of subdivision
surfaces using a Kalman filter. Accordingly, we extend the real-time Kalman tracking
framework defined in [5] by employing biomechanically constrained state transitions.
First, the isoparametric FEA method for Doo-Sabin surface models [7] is briefly
described. This step enables the computation of a stiffness matrix for a given Doo-
Sabin endocardial model using shell elements without changing the model geometry. It
also eliminates the inconvenient remodeling/meshing procedures commonly conducted
prior to FEA. However, the computed model might lead to inaccurate deformation
modes due to hypothesized model shape and FEA parameters (e.g. Young’s modulus,
Poisson’s ratio). The statistical model improvement stage addresses this problem by
employing Control Point Distribution Models (CPDM) [8] and Baruch and Bar-Itzhack
direct matrix modifications (BBDMM) [9]. It generates a more accurate model shape,
and restricts model’s deformation modes using experimentally observed endocardial
surface variations. To compute CPDM, we introduce a regressive conversion method
from ground-truth endocardial surface meshes to Doo-Sabin surface representations.
The mean endocardial surface model and its modes of deformation are found using
Doo-Sabin surface representations that are converted from a training dataset. The
mean shape is utilized as the new model shape, and the modes of deformation are
used for modifying the model stiffness matrix in BBDMM method. Finally, the
state prediction stage of the Kalman tracking framework is formulated to perform
biomechanically constrained tracking. In the results section, endocardial surface
tracking quality is compared among (1) Doo-Sabin surface models with different
control node resolutions, (2) biomechanically constrained and non-constrained state

128



Chapter 9. Doo-Sabin Surface Models with Biomechanical Constraints for Kalman
Filter Based Endocardial Wall Tracking in 3D+T Echocardiography

transitions, and (3) the systems employing statistically improved and not improved
Doo-Sabin models.

9.2 Isoparametric Formulation of Doo-Sabin Sur-
face Models

The tracking framework introduced in [5] is built around a deformable Doo-Sabin
subdivision model parametrized by a set of control nodes with associated displacement
direction vectors. For the FEA of Doo-Sabin endocardial models, we propose to use
an isoparametric method from [7] as it (1) eliminates the need for meshing tools by
employing a unified geometric representation for the design and analysis, and (2)
generates a stiffness matrix that is directly defined for the control node displacements
of the model.

A Doo-Sabin surface is a type of a subdivision surface that generalizes bi-quadric
B-spline patches to an arbitrary topology [10]. It is defined as the limit surface of
a recursive subdivision process. Each limit surface position of a patch is uniquely
described using parametric patch coordinates (ξ, η) that vary between 0 and 1. The
basis functions map patch coordinates to physical coordinates by,

y =

n∑
i=1

bi (ξ, η) qi, (9.1)

where (1) n gives the total number of control nodes for a given patch, (2) bi is the basis
function for the ith control node of the patch, (3) qi gives the physical coordinates of
the ith control node, and (4) y holds the mapped physical coordinates. Please refer
to [5] for the derivation of the basis functions.

The basis functions can also be utilized for defining isoparametric solid shell
elements during the FEA [7]. The degenerated solids based approach, proposed in
[11], can be employed for the shell elements with shape functions:

y =

n∑
i=1

bi (ξ, η)

{
qi + t

ζ

2
v3i

}
, (9.2)

where (1) [v1i, v2i, v3i] defines orthogonal axes at the ith control node of the patch, in
which v3i gives the surface normal direction, (2) t gives the shell thickness, and (3) a
parametric patch coordinate ζ traverses on the surface normal direction. Hence, each
surface patch is represented by a shell element with a thickness. The displacement
vector u of any point in the element is given by,

u =

n∑
i=1

bi (ξ, η)

{
ui + t

ζ

2
[v1i,−v2i]

[
αi
βi

]}
, (9.3)

where (1) ui = [ui, vi, wi]
T

is the displacement vector for the ith control node, and
(2) αi and βi are the scalar rotations in radians around v1i and v2i axes respectively.
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9.3. Statistical Model Improvements

During the FEA of the shell structures, a local coordinate system (x′, y′, z′) of the
element needs to be determined. By applying a linear interpolation, an orthogonal set
of local coordinate axes for any point in the element are given by,

v3 (ξ, η) =

∑n
i=1 bi (ξ, η) v3i

|
∑n
i=1 bi (ξ, η) v3i|

, v1 (ξ, η) =
h× v3

|h× v3|
, v2 (ξ, η) = v3 × v1, (9.4)

with h giving an arbitrary vector that satisfies h 6= v3 (ξ, η).

The strain vector ε = [εx′ , εy′ , γx′y′ , γx′z′ , γy′z′ ]
T

is described by the first partial

derivatives of the local displacement vector u′ = [u′, v′, w′]
T

as

ε =
[

∂u′

∂x′ ,
∂v′

∂y′ ,
∂u′

∂y′ + ∂v′

∂x′ ,
∂u′

∂z′ + ∂w′

∂x′ ,
∂v′

∂z′ + ∂w′

∂y′

]T
, (9.5)

where (1) εx′ and εy′ are the normal strains in x′ and y′ directions, and (2) γx′y′ ,
γx′z′ and γy′z′ are the shear strains in the x′y′, x′z′ and y′z′ planes respectively. The
relation between the strain and stress (σ) vectors can be formed using Generalized
Hooke’s Law as σ = Dε, in which the material matrix D is defined using Young’s
modulus and Poisson’s ratio [11].

Using a variational formulation, the stiffness matrix of an element is given by:

Ke =

∫∫∫
BTDBdxdydz, (9.6)

where B (strain-displacement matrix) relates the strains to the control node
displacements (δ) using ε = Bδ. To compute B, firstly the components of ε are

found as described in [7]. Next, B can be found solving ε = B [δ1, δ2, . . . δn]
T

where

δi = [ui, vi, wi, αi, βi]
T

. The infinitesimal volume computed in physical coordinates
can be expressed in terms of parametric coordinates as dxdydz = |J| dξdηdζ, in
which 3 × 3 Jacobian matrix J gives the first-order partial derivatives of physical
coordinates with respect to parametric coordinates. Finally,

∫∫∫
BTDB |J| dξdηdζ can

be numerically estimated using Gauss Legendre quadrature rules. Using two samples
in ζ direction and minimum four samples in both ξ and η directions is sufficient for thin
shell element stiffness matrix calculations [11]. Computed element stiffness matrices
can be assembled into a model stiffness matrix K following a standard procedure.

The resolution of a given Doo-Sabin surface model can be adjusted by basis
refinements, without changing the model geometry or its parametrization (See Figure
9.1). A Doo-Sabin surface refinement produces a model with a higher number of
elements, which provides an increased physical simulation accuracy during FEA. The
convergence properties of Doo-Sabin shell elements are reported in [7].

9.3 Statistical Model Improvements

An endocardial model designed using hypothetical shape and material properties (e.g.
Young’s modulus and Poisson’s ratio) might lead to poor tracking accuracy. Yet, the
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Figure 9.1: (A) The limit surface of an arbitrary patch and its subdivisions are shown
in green, the control nodes for the green patches are shown in yellow. Subdivided
patches define the exact same limit surface as the original patch. (B) The geometry
of a shell element for the green patch from (A-1) is shown; each patch is modeled by
a shell element.

identification of the optimal properties requires a considerable amount of user input
and time, which might not be manageable for a complex structure such as the LV [12].
We propose to use a statistical model improvement method that (1) learns the mean
model shape and its deformations using a training dataset, and (2) updates the model
shape and the stiffness matrix directly using the learned information.

For producing a statistical endocardial Doo-Sabin surface model, firstly a
conversion procedure between 3D ground-truth endocardial surface segmentations and
Doo-Sabin surface representations needs to be described. We propose a regressive
approach for this task.

A dense set of landmark points (m � n), which are evenly spread around a
patch, is given by L = {(ξ1, η1) , (ξ2, η2) , . . . , (ξm, ηm)}. The tracker defined in
[5], referred as the classical tracker, maps L on to a set of Cartesian coordinates
as (ξi, ηi) → yi

(ρ,τ), where (1) ρ ∈ {1, 2, . . . r} identifies a recording, and (2)
τ ∈ [0 : end-systole, 1 : end-diastole] gives the temporal cardiac cycle position. Each
yi

(ρ,τ) can be updated using a normal displacement (in v3 direction from Equations

9.4) to a ground-truth surface point ỹ
(b,τ)
i . Next, m equations that relate unknown

patch control node positions, q(ρ,τ), and the ground-truth surface points can be defined
as,

ỹ
(ρ,τ)
i =

n∑
j=1

bj (ξi, ηi) q
(ρ,τ)
j , 1 ≤ i ≤ m. (9.7)

The equations collected from all surface patches can be put into a matrix form:

Ỹ(ρ,τ) = FQ(ρ,τ) + W, (9.8)

where (1) F is a design matrix holding the basis function values, (2) Q(ρ,τ) is a model
control node matrix, and (3) W is a mapping error matrix. Assuming white mapping
errors, the maximum likelihood estimator (MLE) for Q(ρ,τ) is found by Q̂(ρ,τ) =

131



9.3. Statistical Model Improvements

Figure 9.2: (A) Doo-Sabin surface representation produced by the classical tracker
with landmark (yellow) and control (red) points, which does not fit at apical
region, (B) ground-truth surface segmentation, (C) ground-truth landmark points,
and (D) updated Doo-Sabin surface representation using MLE based conversion are
represented.

(
FTF

)−1
FT Ỹ(ρ,τ) [13]. A Doo-Sabin surface representation with the control nodes

given by Q̂(ρ,τ) fits onto the ground-truth endocardial surface segmentation for the
recording ρ at τ (see Figure 9.2).

After estimating Doo-Sabin surface representations for all training recordings at
each cardiac cycle position, CPDM can be computed. First, the surface representations
are aligned utilizing the global state information of the classical tracker, which keeps
the model translation and rotation with respect to an initial model state [5]. Next,
the mean model representation is computed using the aligned models; Q̄ gives the
mean model’s control nodes. Finally, the control node covariance matrix V about Q̄
is found. The t eigenvectors of V, S = [s1, s2, . . . , st], corresponding to the largest
t eigenvalues Ω2

pdm = diag
(
ω2

1 , ω
2
2 , . . . , ω

2
t

)
, give the observed modes of variation (or

deformation) for the model [8].
The Doo-Sabin model employed in the classical tracker can be improved using (1)

the mean model representation, and (2) the observed modes of deformation. First, the
model control nodes are modified as the mean model control nodes Q̄, hence the modes
of deformation of the observed and computed models are comparable. Then, the model
stiffness matrix for the modified model is found using the isoparametric formulation
introduced in the previous section as K

′
. Modal Analysis can be performed to find

deformation modes of the modified model by solving,

K
′
Φfem = MΦfemΩ2

fem, (9.9)

where (1) M is a mass matrix assumed as an identity matrix in our study, (2) Φfem
is the eigenvector matrix of M−1K

′
and represents the deformation modes, and (3)

Ω2
fem is a diagonal matrix of the associated eigenvalues. It is desirable to have similar

deformation modes as the observed ones given by CPDM.
The BBDMM is a direct matrix modification method [9] that makes minimal

amount of modifications on the original stiffness matrix to produce desired deformation
modes. In this study, it is utilized to make minimal modifications to K′ by solving,
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minKopt

∥∥∥M−1/2
(
Kopt −K

′
)

M−1/2
∥∥∥
F
,

s.t. KoptS = MSΩ2
pdm, Kopt = KT

opt, (9.10)

where ‖·‖F is the Frobenius norm. With the assumptions of (1) K
′

is symmetric, (2)
S and MSΩ2

pdm are both full rank, (3) STMSΩ2
pdm is symmetric and non-singular,

and (4) M is non singular such that Rank
(
MTMS

)
= Rank

(
MSΩ2

pdm

)
, the unique

solution to Kopt can be found as,

Kopt = K
′
+
(
Y −K

′
S
) (

YTS
)−1

YT + Y
(
STY

)−1
(
Y −K

′
S
)T

−Y
(
YTS

)−1
(
Y −K

′
S
)T

S
(
YTS

)−1
YT , (9.11)

where Y = MSΩ2
pdm [12], and Kopt is the optimally modified stiffness matrix for

the endocardial model. Please note that S gives the t most prominent deformation
modes for Kopt: the major deformation modes produced by Kopt are similar with the
observed modes learned from a training dataset.

9.4 Tracking Framework

The tracking framework represents the shape and pose deformations by a composite
transform, where local shape deformations are obtained by moving control nodes in
the subdivision model together with a global transformation that translates, rotates

and scales the whole model. This leads to a composite state vector x =
[
xTg , xTl

]T
,

consisting of ng global and nl local parameters.
The tracking framework consists of five separate stages, namely the (1) state

prediction, (2) evaluation of tracking model, (3) edge measurements, (4) measurement
assimilation, and (5) measurement update. The biomechanical constraints can be
enforced in the state prediction stage [6], which is further elaborated in this section.
A more detailed discussion on the other stages of the framework can be found in [5].

The control node displacements of a Doo-Sabin surface model can be formulated
under the principle of minimal energy using ordinary differential equation as,

Mü + Cu̇ + Ku = 0, (9.12)

where (1) u = [u1, u2, . . . , up]
T

gives the normal displacements for a model with
p control nodes, and (2) C is a Rayleigh damping matrix, which can be found by
C = αM + βK with small weighting constants α and β. Accordingly, a continuous-
time linear time-invariant stochastic system can be derived as ẋ (t) = Acx (t), where

x [t] =

[
u (t)
u̇ (t)

]
, Ac =

[
0 I

−M−1K −M−1C

]
. (9.13)
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This system can be discretized as x [k + 1] = Adx [k], where (1) x [k] =[
u [k]

T
v [k]

T
]T

with v [k] denoting the velocities of the control nodes at time step k,

and (2) Ad = eAcΓ where Γ = 1 gives the unit sampling interval used in our study.
Ad can be decomposed as,

Ad =

[
A00 A01

A10 A11

]
, (9.14)

where A00, A01, A10 and A11 are p × p sub-matrices. Assuming v [k] ≈ u[k]−u[k−1]
Γ ,

the motion model can be written in terms of the last two successive states as,

u [k + 1] =
[
A00 + Γ−1A01

]
u [k] +

[
−Γ−1A01

]
u [k − 1] . (9.15)

In [5], control nodes’ normal displacements give the system local states; xl = u. Hence,
Equation 9.15 can be directly plugged into the joint motion model proposed in [5] by,

x̄ [k + 1] =

[
Rg 0
0 Rl

(
A00 + Γ−1A01

) ] x̂ [k] +

[
0 0
0 Rl

(
−Γ−1A01

) ] x̂ [k − 1] ,

(9.16)
where (1) x̄ [k + 1] is the predicted state for the time step k+1, (2) x̂ [k] is the estimated
state from the time step k, and (3) Rg and Rl are the regularization matrices for the
global and local state parameters respectively.

9.5 Results

3D echocardiography was performed on 10 healthy subjects and 19 subjects with
recent first time myocardial infarction, using a Vivid 7 (26 recordings) or a Vivid E9
(3 recordings) ultrasound scanner (GE Vingmed Ultrasound, Norway) with a matrix
array (3V) transducer. The endocardial border segmentation of the recordings was
performed by a trained medical doctor using a semi-automatic segmentation tool (4D
AutoLVQ, GE Vingmed Ultrasound, Norway).

For the initial FEA, the shell thickness, Young’s modulus and Poisson’s ratio were
set as 8mm, 75000Pa and 0.47 as proposed in [6]. For the CPDM based model updates,
a set of 441 landmark points evenly spread around the model was used. The observed
modes of deformation were represented using five eigenvectors (t = 5) corresponding
to the five largest eigenvalues, which described ≥ 90% of the experimentally observed
endocardial shape variations. The Rayleigh damping constants of the tracker were set
as α = β = 0.1.

The Kalman tracking framework was evaluated for three different configurations:

1. The system with no biomechanical constraints (noBC): it tracks a Doo-Sabin
surface model using a tracker with no biomechanical constraints. This setup is
identical with the classical tracker [5].
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Figure 9.3: Not-refined, refined and double-refined Doo-Sabin surface models (A) for
the noBC and BCnoI , and (B) BCwithI setups are represented. For the BCwithI,
control node positions are updated using the mean model computed by CPDM.

2. The system with biomechanical constraints and no statistical model improve-
ments (BCnoI): it tracks a Doo-Sabin surface model using a tracker with
biomechanically constrained state transitions, as described in Section 9.4. The
model’s stiffness matrix was computed using the isoparametric FEA method
from Section 9.2.

3. The system with biomechanical constraints and statistical model improvements
(BCwithI): it tracks an improved Doo-Sabin surface model using a tracker
with biomechanically constrained state transitions. The improved model has
a modified shape and a stiffness matrix as described in Section 9.3.

Each configuration was executed with not-refined (9 nodes), refined (34 nodes) and
double-refined (136 nodes) Doo-Sabin surface models represented in Figure 9.3. noBC
and BCnoI setups were tested using all 29 recordings directly. As BCwithI requires a
training with a pre-segmented dataset, it was tested via leave-one-out cross-validation
[14]. The error measurements including the (a) absolute surface point error giving
the average absolute distance of each predicted surface point to ground-truth surface,
(b) squared surface point error giving the average squared distance of each predicted
surface point to ground-truth surface, and (c) absolute volume error giving the average
of predicted surface’s absolute volume errors are given in Figure 9.4. Signed surface
error polar plots, showing the average signed distances between the predicted and
ground-truth surfaces using 17-segment model of the American Heart Association
[15], are represented in Figure 9.5. There were no significant differences between the
segmentation performances for the subjects with and without infarction; therefore, the
evaluation results are reported for all recordings without any further classification.

The tracking framework is implemented in C++, and processes each frame in 2ms
with not-refined, 3.4ms with refined and 30.6ms with double-refined models when
executed on a 2.80 GHz Intel Core 2 Duo CPU. There are no execution time differences
between the noBC, BCnoI and BCwithI setups as the stiffness and state transition
matrices are computed only once for each model.
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Figure 9.4: (A) Absolute surface point error (in mm) , (B) squared surface point error
(in mm2), and (C) absolute volume error (in percentages) for the Kalman tracking
framework with noBC, BCnoI, and BCwithI setups for non-refined, refined and double-
refined Doo-Sabin model tracking.

9.6 Discussion and Conclusion

In this study, we extended the real-time Doo-Sabin surface models based Kalman
tracking framework with biomechanical constraints. The introduced method is (1)
practical; the computed models can be directly used in a Kalman tracking framework
by implementing a few modifications in the state prediction stage, (2) useful since it
improves the tracking accuracy without introducing additional run-time complexity,
(3) yet novel as the biomechanically constrained subdivision surfaces have not been
employed in a Kalman tracker prior to our study.

Our analyses showed that the biomechanical constraints are necessary especially
when the tracked model has a high control node resolution. This is due to the fact
that as the model complexity increases the tracker can benefit more from a spatial
regularization, which is provided by biomechanical constraints. Hence, we can observe
that the BCnoI setup allows tracking quality to be stabilized over model resolution
levels (see Figure 9.4 and Figure 9.5 row-2). The statistical model improvements take
advantage of higher model resolution levels as (1) the model node updates provide a
more realistic model shape to perform tracking, and (2) deformation modes learned
from CPDM improve the stiffness matrix accuracy (see Figure 9.4 and Figure 9.5
row-3).

The 17-segment model representations show that the initial tracker produces
significant under-estimation error (estimated borders are closer to the object center
than the ground-truth borders) at the apex region, the center of the polar plot (see
Figure 9.5 row-1). Introducing biomechanical constraints or increasing the model
resolution without changing the model shape does not significantly improve the
tracking accuracy for the apex region (see Figure 9.5 row-2). The model improvement
stage alleviates the problem by modifying the model shape to have a curvier apical
part, which is closer to the natural appearance of the LV (see Figure 9.3 (B) and
Figure 9.5 row-3).
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Figure 9.5: 17-segment model representations for the signed surface error: 5mm over-
estimation is purple, 5mm under-estimation is red, 0mm no-error is light blue. Rows
1, 2 and 3 show the error plots for the noBC, BCnoI, and BCwithI setups respectively.
Columns 1, 2 and 3 show the error plots for the non-refined, refined and double-refined
Doo-Sabin model trackers respectively.
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